X

]

X

UNIVERSITEIT VAN AMSTERDAM

COMPILER REPORT

SAIF RASHED (15063658)

Pre-MasTeR SoFTware ENGINEERING

TABLE OF CONTENTS

1. INTRODUCTION
2. LEXICOGRAPHIC ANALYSIS
3. SYNTACTIC ANALYSIS
4. SEMANTIC ANALYSIS
Strategy
Symbol table
Array initialization
Induction removal (and initialization)
Variable initialization
Name binding
Type checker
5. CODE GENERATION
Strategy
Parameter passing
Loop Transform
Boolean transformation
Code generator
REFLECTION

COMPILER CONSTRUCTION

© © ©W o N ~NOoOO oMM OWDMDNDND

-, .\
N - O ©

PAGE 1

1. INTRODUCTION

The importance of programming languages and compilers cannot be overstated as
compilers are essential tools that translate high-level programming languages into
machine code. This report delves into the design and implementation of a compiler
for the CiviC programming language, a C-like language designed for educational
purposes. In this compiler, we designed support for arrays and multi-dimensional
arrays up to the context analysis stage and nested functions up to the type analysis
stage, but we were only able to complete the core language. By outlining the various
stages involved in the process, such as lexical analysis, syntactic analysis, semantic
analysis, and code generation, we aim to provide a comprehensive understanding of
the inner workings of our CiviC compiler. Furthermore, we reflect on the challenges
faced and lessons learned during this project.

2. LEXICOGRAPHIC ANALYSIS

The construction of our compiler began with the creation of a lexer using the Flex
tool. A Flex file was created to define the tokenization rules for the input source
code. Keywords and symbols utilized in the Civicc language were identified, and
corresponding regular expressions were devised to recognize them in the input
stream.

One challenge encountered during the development process was the lack of an
effective method to test and debug our scanner. To overcome this challenge, the
lexer was tested in a separate file, utilizing the flex command to compile and run a
scanner. Simple print statements were implemented to output the tokens recognized
by the lexer for a given input. Following this process, once confidence in the
accuracy of token recognition was established, the lexer was integrated into our
compiler, facilitating the advancement to the syntactic analysis phase.

3. SYNTACTIC ANALYSIS

This section describes the order of operations used in building the grammar.

Constants and expressions. Before starting with the higher-level grammars, we
began by defining the constants and expressions as specified in the CiviC

document. As a result, we created unary_expr, arithmetic_expr, comparison_expr,
and logical_expr grammars. We also added expressions such as funcall and cast.

Statements, parameters and arguments. In defining these, we created three types
of grammars for each: singular, one or many, and optional many grammars. We saw
these types as being benéeficial, for example, in function calls where it might be
optional to have arguments. This could also be the case for parameters where
function definitions might not have any parameters. The same goes for statements
where a block could be empty.

Function definition, variable declaration. In the function definition, we attempted
to unify all parts into one grammar. Unfortunately, this approach did not work out as

COMPILER CONSTRUCTION PAGE 2

the grammar became too large, and we encountered ambiguities resulting in
shift/reduce conflicts. To resolve this issue, we split the function definition into
multiple parts, including funheader, funbody, and fundef. This approach made the
grammar more manageable and allowed us to use the parts in other contexts, such
as localfundef, for which we also implemented a grammar.

However, we still encountered ambiguities with vardecls, which was a known issue
that had been discussed in the announcements. We resolved this conflict by making
the vardecls left-recursive, but this resulted in the vardecls being reversed. To
address this, we implemented a quick and easy solution that allowed us to continue:

vardecls: vardecls vardecl
{

node_st kcurrent = $1;

while(VARDECL_NEXT(current) != NULL) {
current = VARDECL_NEXT(current);
b

VARDECL_NEXT(current) = $2;

s

Global definition / declaration. After completing all the individual parts, we moved
on to the global definition and declaration. This section was relatively
straightforward, and we encountered no significant challenges or noteworthy
elements worth mentioning in this report.

Top level declarations and program. The same applies to this since they were
relatively simple grammars that did not introduce any noteworthy elements, so we
will not delve into further detail here.

4. SEMANTIC ANALYSIS

COMPILER CONSTRUCTION PAGE 3

During the semantic analysis stage, we designed a symbol table and implemented
type checking. Each process will be described, with particular attention paid to the
uniqgue aspects. The following section will describe the order of operations used in
implementing this.

STRATEGY

The general idea was to devise a symbol table that could be used for type checking
and code generation. To do this, we needed to store all declarations in a data
structure, and we chose to use a SYMTBL and STE node, which would in turn
become a linked list attached to the program and fundef nodes.

The symtbl node would contain the head (child) of the symbol table and an outer
(child) node that would reference the parent table. To fill this symbol table, we would
need to traverse all declarations and store them with an STstore function. This
function would create a new STE node, add it to the end of the SYMTBL, and link
the STE to this declaration. If an STE was already defined, we would give an error
message.

After some transformations, we would perform name binding, which would pass all
Varlet and Var nodes and search for the name in the symbol table with NBlookup.
This function would search through all symbol tables by climbing up the parents until
there is no parent left. Let’s go into more detail.

SYMBOL TABLE

The symbol table traversal will visit the following nodes: program, fundef, globdecl,
globdef, vardecl, param, and ids.

The goal of this traversal is to store all declarations in the symbol table of the scope
where each declaration is located. To keep track of the scope, we use travdata to
store the program or fundef node. Additionally, we define three functions that assist
us in the traversals:

STstore. This function creates a new STE, adds it at the end of a symbol table,
creates a link with the given declaration, and adds the type to the STE.

STlookup. We also need to determine whether a declaration has already been
defined in the symbol table so that we can produce a correct error message. We
accomplish this using STlookup, which searches for an identifier in a symbol table.
Note that we have the symbol table stored in our scope node, which has been saved
in the travdata.

STgeneratesignature. We want to encode function arity so we generate a function

signature which contains the parameter amount. A function called foo(int a, int b)
would get this signature: foo_2.

COMPILER CONSTRUCTION PAGE 4

ARRAY INITIALIZATION

This part was implemented in an optimistic moment in our construction when we
thought that arrays were still achievable. We still managed to do this transformation
but this was arguably the hardest transformation to implement. There are several
parts to this traversal:

Systematic Traversal of Declarations:

In the context analysis phase, we systematically traverse all fundefs, and manually
loop through all declarations. If we encounter a vardecl with dimensions, we begin
the process of extracting the dimensions.

Extracting Dimensions:

After identifying a vardecl with dimensions, we extract the dimensions and replace
them with temporary variable names. To maintain the proper order, we use the
Aladd_before function to add the new vardecls in the correct position. We also add
them before the symbol table entry to maintain consistency within the table.

Determining Expression Type (Array Expression or Scalar Value):
We now need to determine the type of expression, as it will influence the next steps.

a) Array Expression: If the expression is an array, we create a list of assign
statements. These statements will be added to the statement list of the fundef.

b) Scalar Value: If the expression is a scalar value, we create a nested for loop. The
amount of nesting is determined by the number of dimensions defined in the
vardecl.

We unfortunately didn’t manage to get the order of the assignments correct which
means that they are now reversed. This was because we did not build the stmts list
correctly. Despite our best efforts, we were unable to correct this mistake in a timely
manner due to time constraints. As a result, we were forced to move on to the next
stage of the project, with the hope of addressing this issue at a later point.

COMPILER CONSTRUCTION PAGE 5

INDUCTION REMOVAL (AND INITIALIZATION)

The goal of this transformation is to extract the induction variable into a variable
declaration and remove it from the for loop. Initially, we performed the extraction,
but later on, during code generation, we encountered an issue. While the for loops
worked correctly, they did not work as expected when nested in another loop. This
is because the transformation to an assignment, which is done during variable
initialization, did not account for nested loops. To address this, we regard the two
transformations as one operation but in two separate traversals to ensure proper
functionality in both cases.

To visualize this process we attempt to devise a compilation scheme:

induction removal induction initialization
i o] inti = Start;
for(int i = Start, Stop, Step)
Body LoopStart
c } for(int i, Stop, Step)
Inner
Rest C }
R Statements
o LoopEnd
int i = Start;
— . Rest
for(int i, Stop, Step) i J
C[Body]
}
inti;
C[Rest] ™ LoopStart
i = Start;

for(int i, Stop, Step)
ClInner]
ki

C[Statements]
LoopEnd
C[Rest]

In the induction removal transformation, we extract the start expression into a
separate variable declaration and recursively apply this transformation to the body
statements and post statements. After extracting the induction variable, we perform
an assignment right before the for loop statement for nested loops to ensure that the
variable is assigned the start value each time the loop iterates. This helps prevent
issues, such as those explained above, from arising.

COMPILER CONSTRUCTION PAGE 6

VARIABLE INITIALIZATION

In this code transformation process, we perform two main tasks. Firstly, we initialize
global variables by extracting their initialization values and inserting them into an
assignment statement within the "__init" function. Secondly, we initialize function
variable declarations by extracting their initialization values and inserting them into a
new assignment statement at the beginning of the function statement list. If the
variable declaration contains a "var", we traverse it to determine the correct
associated declaration.

To visualize this process we attempt to devise a compilation scheme:

Variable initialization

int Var = Expression;

Rest

int Var,
- Var = Expression

C[Rest]

However, we encountered an issue with determining the correct scope for a variable.
Our symbol table lookup function searches the entire table, regardless of position.
This poses a problem when a variable uses a declaration that is further down the list
or even within a "varlet". In this case, it should actually point to a global variable, if it
exists. To solve this, we systematically check if a variable has a declaration before,
and if not, we search the outer scope for a global variable. Otherwise, we throw an
undefined reference error.

NAME BINDING

During this traversal, we focus on searching varlet, var, and funcall nodes. This is the
final pass in the context analysis, which was a satisfying moment because it meant
that the symbol table would finally be useful for type checking analysis. For var and
varlet nodes, nothing much changed - we simply use the lookup function to search

COMPILER CONSTRUCTION PAGE 7

all symbol tables from inner to outer and skip any nodes that already have an entry
due to preceding transformations.

However, for funcall nodes, things become more interesting. We used the
STgeneratesignature function during symbol table creation to encode the arity of the
fundef node. Now, we need to create a version that generates a signature for
function calls by counting the arguments. We use this signature to search the
symbol table, and if it exists, we have a match on arity. If it does not exist, we can
conclude that the function signature does not match any other function.

During this process, we encountered a problem when considering implementing
overloaded functions. It was problematic because we did not know how to
determine the types of each argument without actually performing type checking.
One possible solution would be to TRAVdo the arguments in case any of the
arguments are vars. After that, we could infer the types of each argument and
generate a correct signature, allowing for function overloading. However, we did not
pursue this solution and continued into type analysis.

TYPE CHECKER

In the type checker, our goal was to check for type mismatches and provide
meaningful error messages when statements, functions, or variable declarations had
disallowed types. In other words, we aimed to ensure that the types of all
expressions, variables, and functions were compatible with their expected types, as
per the rules of the CiviC language.

To achieve this, we followed a similar approach to that used in the syntactical
analysis of grammars. We began with the lowest level nodes, such as constants and
variables, and gradually progressed to monop/binops and other expressions. At
each of these stages, we tracked an inferred variable that changed based on the
type of expression, providing the correct type when traversed. This helped us in
higher-level nodes like statements and function definitions.

Constants

In this part of type checking, we simply pass the num, float, and bool nodes and
assign the inferred variable to one of these types. For var and varlet nodes, we do
the same, but now we access the symbol table entry node and read the type from
there.

Expressions

For the binops and monops, we use a switch case, which suffices for our goal. First,
we check the type of operator, and then depending on the combination of types, we
infer a certain type. If none of the cases are met, we return an error message. For
funcalls, we iterate through all arguments and simultaneously test them with the
parameters of their function definition. Eventually, we infer the function definition

COMPILER CONSTRUCTION PAGE 8

type by accessing it in the symbol table. The cast node does the same, but here we
already insert an ternary node for booleans that are casted to either float or num.

Statements

For return statements, we use our trick of storing the scope in travdata to access the
function definition. Now, we can test the types and send error messages if
necessary. In the assign node, we traverse both sides and compare the types.
However, it should be noted that assign type checking also includes globaldef and
vardecl type checking. We also perform an indices check. For the rest of the
statements, we simply check if the types are correct in place. For example, in a while
loop, we would check if the condition is boolean.

Function definition

Here, we use a TChas_return function to check if a function has a return statement
or not. If it does not have a return statement when it is required, we send an error
message. In addition to this, we simply traverse the children.

5. CODE GENERATION

In this part we describe the necessary transformations for code generation and the
code generation itself. In this section we really got to fixing some design mistakes.

STRATEGY

To implement code generation, we had to make some transformations that would
allow the code generator to produce code easily. Once the transformations were
done, we used a file pointer in the travdata to write to a file. For each of the nodes
we traversed, we would use fprintf to output the correct instructions. But before
going into more detail, let's first go through the transformations.

PARAMETER PASSING

The parameter passing transformation passes through all fundef and funcall nodes
and uses PPadd_expr_before_arg and PPadd_id_before_arg to insert new
arguments in the funcall. For parameters we use PPadd_before_param function to
add new parameters. We did not encounter any problems when creating this
traversal so therefore we can keep it short.

Loopr TRANSFORM

In the code generation we want to keep things simple and not overcomplicate
things. That also means that we want to restrict ourselves to generating one type of
loop. This means transforming the for loop into an equivalent while loop.

To visualize this process we attempt to devise a compilation scheme:

COMPILER CONSTRUCTION PAGE 9

Loop transform

for(Start, Stop, Step)
Boady
c 1

Rest

Start
while(Start < Stop)
C[Body]
- Start + Step Step >0 ||
} Step <0

C[Rest]

Start

while(Start < Stop)
C[Body]
Start++ Otherwise

}

C[Rest]

To do this we should take in consideration that a for loop can have a negative step
value. This changes the behavior and we quickly figured out that the ternary can be
used to encode this logic. This is how we implemented it:

node_st *condition = ASTternary/(
ASTbinop (CCNcopy(step), ASTnum(@), BO_gt),

ASTbinop (ASTvar(NULL, STRcpy(FOR_VAR(node))), CCNcopy(FOR_STOP(node)), BO_1t),
ASTbinop (ASTvar(NULL, STRcpy(FOR_VAR(node))), CCNcopy(FOR_STOP(node)), BO_gt));

BOOLEAN TRANSFORMATION

This transformation is quite straightforward and doesn’t require much explanation
but simply said we use the ternary node to recreate AND and OR operators by doing
the following transformation:

COMPILER CONSTRUCTION PAGE 10

Boolean transformation

C { (Expr LogicalOp Expr)

—» (Expr ? true : C[EXpr]) ‘ LogicalOp == BO_or

—» (Expr ? C[Expr] : false)

LogicalOp == BO_and

CODE GENERATOR

In this part, we initially encountered a lot of trouble because the concept of
assembly and the VM was still unclear to us. The first thing we did was to produce
assembly code with the reference compiler. By using the -o flag, we managed to
generate an output file, which was crucial for generating code since it allowed us to
compare both sides. The second step was to actually understand how the CiviC VM
worked, and we struggled a lot with understanding what a constant runtime pool
actually means in relation to the CiviC VM.

After some time, we understood that the CiviC VM consists of multiple tables,
including import, export, global, and constant tables, and that each maps to a type
of node. For example, a global definition would always be added to the global table,
and each constant node above 2 would always be added to the constant table.

After understanding these nuances, we started building out the code generator. To
keep track of the indexes of each table, we keep track of globals:

int global_index =
int constant_index
int importfun_index

int importvar_index

char xinstruction_string = "";

As you can see, we also have a string that we build up. This string will contain all the
pseudo instructions for the tables. The next step is to actually increment these
values in the globdef, vardecl, param, and globdecl nodes. Before incrementing, we

COMPILER CONSTRUCTION PAGE 11

need to store the index somewhere so that var/varlets can have access to the
correct table entry.

To do this, we create a new STE attribute called 'assembly_index' which will store
this information for us. Because all var/varlets are linked with the STE's, we can
access the correct table index, but only have to determine the correct instruction.
This is simply a set of if statements that check the node type.

Everything afterwards was quite straightforward. Eventually, after testing and
comparing the reference compiler bytecode with ours, we created our own tests.
These captured some edge cases:

e core.cvc: Contains our civic core.cvc code (without the rest since we did not
manage the extensions)

e complex_if.cvc: Contains a complex if statement where we test if-else
statements

e casting.cvc: We further tested casting values to make sure the values are still
the same

e nested_loops.cvc: We nest different types of loops in each other to make sure
we did not do anything wrong in the loop transform

REFLECTION

We started the semantic phase in a very improvised manner without really designing
the process. Fortunately, we got the hang of this midway through the context
analysis, where we designed and thought out the entire process before proceeding.
This meant taking a helicopter view and looking further down the process to
determine what would be useful and what was redundant. The result was that we
were able to create useful functions like the lookup functions (which come in two
variants) that saved us a lot of time. We could now also order the traversals in the
most optimal way, such as for example initializing the induction variables from
induction removal in the var initialize traversal.

We recognize that there were opportunities for improvement in our approach. For
example, we dedicated a lot of unnecessary time to array initialization, which could
have been better allocated towards implementing function overloading. Despite this
setback, we believe that our decision to design for all extensions (and attempt them)
from the start was the right choice. Each component of our project builds upon one
another, and not doing so would have been a risky move since there was a
possibility that we were able to do one or more extensions if time allowed for it.
Overall, we are pleased with our end result.

COMPILER CONSTRUCTION PAGE 12

	1. INTRODUCTION
	2. LEXICOGRAPHIC ANALYSIS
	3. SYNTACTIC ANALYSIS
	4. SEMANTIC ANALYSIS
	STRATEGY
	SYMBOL TABLE
	ARRAY INITIALIZATION
	
	INDUCTION REMOVAL (AND INITIALIZATION)
	VARIABLE INITIALIZATION
	NAME BINDING
	TYPE CHECKER

	5. CODE GENERATION
	STRATEGY
	PARAMETER PASSING
	LOOP TRANSFORM
	BOOLEAN TRANSFORMATION
	
	CODE GENERATOR

	
	REFLECTION

