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1. INTRODUCTION 
The importance of programming languages and compilers cannot be overstated as 
compilers are essential tools that translate high-level programming languages into 
machine code. This report delves into the design and implementation of a compiler 
for the CiviC programming language, a C-like language designed for educational 
purposes. In this compiler, we designed support for arrays and multi-dimensional 
arrays up to the context analysis stage and nested functions up to the type analysis 
stage, but we were only able to complete the core language. By outlining the various 
stages involved in the process, such as lexical analysis, syntactic analysis, semantic 
analysis, and code generation, we aim to provide a comprehensive understanding of 
the inner workings of our CiviC compiler. Furthermore, we reflect on the challenges 
faced and lessons learned during this project. 

2. LEXICOGRAPHIC ANALYSIS 
The construction of our compiler began with the creation of a lexer using the Flex 
tool. A Flex file was created to define the tokenization rules for the input source 
code. Keywords and symbols utilized in the Civicc language were identified, and 
corresponding regular expressions were devised to recognize them in the input 
stream.  
 
One challenge encountered during the development process was the lack of an 
effective method to test and debug our scanner. To overcome this challenge, the 
lexer was tested in a separate file, utilizing the flex command to compile and run a 
scanner. Simple print statements were implemented to output the tokens recognized 
by the lexer for a given input. Following this process, once confidence in the 
accuracy of token recognition was established, the lexer was integrated into our 
compiler, facilitating the advancement to the syntactic analysis phase. 

3. SYNTACTIC ANALYSIS 
This section describes the order of operations used in building the grammar. 
 
Constants and expressions. Before starting with the higher-level grammars, we 
began by defining the constants and expressions as specified in the CiviC 
document. As a result, we created unary_expr, arithmetic_expr, comparison_expr, 
and logical_expr grammars. We also added expressions such as funcall and cast. 
 
Statements, parameters and arguments. In defining these, we created three types 
of grammars for each: singular, one or many, and optional many grammars. We saw 
these types as being beneficial, for example, in function calls where it might be 
optional to have arguments. This could also be the case for parameters where 
function definitions might not have any parameters. The same goes for statements 
where a block could be empty. 
Function definition, variable declaration. In the function definition, we attempted 
to unify all parts into one grammar. Unfortunately, this approach did not work out as 
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the grammar became too large, and we encountered ambiguities resulting in 
shift/reduce conflicts. To resolve this issue, we split the function definition into 
multiple parts, including funheader, funbody, and fundef. This approach made the 
grammar more manageable and allowed us to use the parts in other contexts, such 
as localfundef, for which we also implemented a grammar.  
 
However, we still encountered ambiguities with vardecls, which was a known issue 
that had been discussed in the announcements. We resolved this conflict by making 
the vardecls left-recursive, but this resulted in the vardecls being reversed. To 
address this, we implemented a quick and easy solution that allowed us to continue: 
 

 
 
Global definition / declaration. After completing all the individual parts, we moved 
on to the global definition and declaration. This section was relatively 
straightforward, and we encountered no significant challenges or noteworthy 
elements worth mentioning in this report. 
 
Top level declarations and program. The same applies to this since they were 
relatively simple grammars that did not introduce any noteworthy elements, so we 
will not delve into further detail here. 
 
 
 
 
 
 

4. SEMANTIC ANALYSIS 
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During the semantic analysis stage, we designed a symbol table and implemented 
type checking. Each process will be described, with particular attention paid to the 
unique aspects. The following section will describe the order of operations used in 
implementing this. 

STRATEGY 

The general idea was to devise a symbol table that could be used for type checking 
and code generation. To do this, we needed to store all declarations in a data 
structure, and we chose to use a SYMTBL and STE node, which would in turn 
become a linked list attached to the program and fundef nodes. 
 
The symtbl node would contain the head (child) of the symbol table and an outer 
(child) node that would reference the parent table. To fill this symbol table, we would 
need to traverse all declarations and store them with an STstore function. This 
function would create a new STE node, add it to the end of the SYMTBL, and link 
the STE to this declaration. If an STE was already defined, we would give an error 
message. 
 
After some transformations, we would perform name binding, which would pass all 
Varlet and Var nodes and search for the name in the symbol table with NBlookup. 
This function would search through all symbol tables by climbing up the parents until 
there is no parent left. Let’s go into more detail.  

SYMBOL TABLE 

The symbol table traversal will visit the following nodes: program, fundef, globdecl, 
globdef, vardecl, param, and ids. 
 
The goal of this traversal is to store all declarations in the symbol table of the scope 
where each declaration is located. To keep track of the scope, we use travdata to 
store the program or fundef node. Additionally, we define three functions that assist 
us in the traversals: 
 
STstore. This function creates a new STE, adds it at the end of a symbol table, 
creates a link with the given declaration, and adds the type to the STE. 
 
STlookup. We also need to determine whether a declaration has already been 
defined in the symbol table so that we can produce a correct error message. We 
accomplish this using STlookup, which searches for an identifier in a symbol table. 
Note that we have the symbol table stored in our scope node, which has been saved 
in the travdata.  
 
STgeneratesignature. We want to encode function arity so we generate a function 
signature which contains the parameter amount. A function called foo(int a, int b) 
would get this signature: foo_2. 
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ARRAY INITIALIZATION 

This part was implemented in an optimistic moment in our construction when we 
thought that arrays were still achievable. We still managed to do this transformation 
but this was arguably the hardest transformation to implement. There are several 
parts to this traversal: 
 
Systematic Traversal of Declarations:  
In the context analysis phase, we systematically traverse all fundefs, and manually 
loop through all declarations. If we encounter a vardecl with dimensions, we begin 
the process of extracting the dimensions.  
 
Extracting Dimensions:  
After identifying a vardecl with dimensions, we extract the dimensions and replace 
them with temporary variable names. To maintain the proper order, we use the 
AIadd_before function to add the new vardecls in the correct position. We also add 
them before the symbol table entry to maintain consistency within the table.  
 
Determining Expression Type (Array Expression or Scalar Value):  
We now need to determine the type of expression, as it will influence the next steps. 
 
a) Array Expression: If the expression is an array, we create a list of assign 
statements. These statements will be added to the statement list of the fundef.  
 
b) Scalar Value: If the expression is a scalar value, we create a nested for loop. The 
amount of nesting is determined by the number of dimensions defined in the 
vardecl. 
 
We unfortunately didn’t manage to get the order of the assignments correct which 
means that they are now reversed. This was because we did not build the stmts list 
correctly.  Despite our best efforts, we were unable to correct this mistake in a timely 
manner due to time constraints. As a result, we were forced to move on to the next 
stage of the project, with the hope of addressing this issue at a later point. 
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INDUCTION REMOVAL (AND INITIALIZATION) 

The goal of this transformation is to extract the induction variable into a variable 
declaration and remove it from the for loop. Initially, we performed the extraction, 
but later on, during code generation, we encountered an issue. While the for loops 
worked correctly, they did not work as expected when nested in another loop. This 
is because the transformation to an assignment, which is done during variable 
initialization, did not account for nested loops. To address this, we regard the two 
transformations as one operation but in two separate traversals to ensure proper 
functionality in both cases.  
 

To visualize this process we attempt to devise a compilation scheme:  
 

 
 
In the induction removal transformation, we extract the start expression into a 
separate variable declaration and recursively apply this transformation to the body 
statements and post statements.  After extracting the induction variable, we perform 
an assignment right before the for loop statement for nested loops to ensure that the 
variable is assigned the start value each time the loop iterates. This helps prevent 
issues, such as those explained above, from arising. 
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VARIABLE INITIALIZATION  

In this code transformation process, we perform two main tasks. Firstly, we initialize 
global variables by extracting their initialization values and inserting them into an 
assignment statement within the "__init" function. Secondly, we initialize function 
variable declarations by extracting their initialization values and inserting them into a 
new assignment statement at the beginning of the function statement list. If the 
variable declaration contains a "var", we traverse it to determine the correct 
associated declaration. 
 

To visualize this process we attempt to devise a compilation scheme: 

 
 
 
However, we encountered an issue with determining the correct scope for a variable. 
Our symbol table lookup function searches the entire table, regardless of position. 
This poses a problem when a variable uses a declaration that is further down the list 
or even within a "varlet". In this case, it should actually point to a global variable, if it 
exists. To solve this, we systematically check if a variable has a declaration before, 
and if not, we search the outer scope for a global variable. Otherwise, we throw an 
undefined reference error. 

NAME BINDING  

During this traversal, we focus on searching varlet, var, and funcall nodes. This is the 
final pass in the context analysis, which was a satisfying moment because it meant 
that the symbol table would finally be useful for type checking analysis. For var and 
varlet nodes, nothing much changed - we simply use the lookup function to search 
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all symbol tables from inner to outer and skip any nodes that already have an entry 
due to preceding transformations. 
 
However, for funcall nodes, things become more interesting. We used the 
STgeneratesignature function during symbol table creation to encode the arity of the 
fundef node. Now, we need to create a version that generates a signature for 
function calls by counting the arguments. We use this signature to search the 
symbol table, and if it exists, we have a match on arity. If it does not exist, we can 
conclude that the function signature does not match any other function. 
 
During this process, we encountered a problem when considering implementing 
overloaded functions. It was problematic because we did not know how to 
determine the types of each argument without actually performing type checking. 
One possible solution would be to TRAVdo the arguments in case any of the 
arguments are vars. After that, we could infer the types of each argument and 
generate a correct signature, allowing for function overloading. However, we did not 
pursue this solution and continued into type analysis. 
 

TYPE CHECKER 

In the type checker, our goal was to check for type mismatches and provide 
meaningful error messages when statements, functions, or variable declarations had 
disallowed types. In other words, we aimed to ensure that the types of all 
expressions, variables, and functions were compatible with their expected types, as 
per the rules of the CiviC language. 
 
To achieve this, we followed a similar approach to that used in the syntactical 
analysis of grammars. We began with the lowest level nodes, such as constants and 
variables, and gradually progressed to monop/binops and other expressions. At 
each of these stages, we tracked an inferred variable that changed based on the 
type of expression, providing the correct type when traversed. This helped us in 
higher-level nodes like statements and function definitions. 
 
Constants 
In this part of type checking, we simply pass the num, float, and bool nodes and 
assign the inferred variable to one of these types. For var and varlet nodes, we do 
the same, but now we access the symbol table entry node and read the type from 
there. 
 
Expressions 
For the binops and monops, we use a switch case, which suffices for our goal. First, 
we check the type of operator, and then depending on the combination of types, we 
infer a certain type. If none of the cases are met, we return an error message. For 
funcalls, we iterate through all arguments and simultaneously test them with the 
parameters of their function definition. Eventually, we infer the function definition 
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type by accessing it in the symbol table. The cast node does the same, but here we 
already insert an ternary node for booleans that are casted to either float or num.  
 
Statements 
For return statements, we use our trick of storing the scope in travdata to access the 
function definition. Now, we can test the types and send error messages if 
necessary. In the assign node, we traverse both sides and compare the types. 
However, it should be noted that assign type checking also includes globaldef and 
vardecl type checking. We also perform an indices check. For the rest of the 
statements, we simply check if the types are correct in place. For example, in a while 
loop, we would check if the condition is boolean. 
 
Function definition 
Here, we use a TChas_return function to check if a function has a return statement 
or not. If it does not have a return statement when it is required, we send an error 
message. In addition to this, we simply traverse the children. 
 

5. CODE GENERATION 
In this part we describe the necessary transformations for code generation and the 
code generation itself. In this section we really got to fixing some design mistakes.  

STRATEGY 

To implement code generation, we had to make some transformations that would 
allow the code generator to produce code easily. Once the transformations were 
done, we used a file pointer in the travdata to write to a file. For each of the nodes 
we traversed, we would use fprintf to output the correct instructions. But before 
going into more detail, let's first go through the transformations. 

PARAMETER PASSING 

The parameter passing transformation passes through all fundef and funcall nodes 
and uses PPadd_expr_before_arg and PPadd_id_before_arg to insert new 
arguments in the funcall. For parameters we use PPadd_before_param function to 
add new parameters. We did not encounter any problems when creating this 
traversal so therefore we can keep it short.  

LOOP TRANSFORM 

In the code generation we want to keep things simple and not overcomplicate 
things. That also means that we want to restrict ourselves to generating one type of 
loop. This means transforming the for loop into an equivalent while loop.  
 
 

To visualize this process we attempt to devise a compilation scheme:  
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To do this we should take in consideration that a for loop can have a negative step 
value. This changes the behavior and we quickly figured out that the ternary can be 
used to encode this logic. This is how we implemented it: 
 

 
 

BOOLEAN TRANSFORMATION 

This transformation is quite straightforward and doesn’t require much explanation 
but simply said we use the ternary node to recreate AND and OR operators by doing 
the following transformation: 
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CODE GENERATOR 

In this part, we initially encountered a lot of trouble because the concept of 
assembly and the VM was still unclear to us. The first thing we did was to produce 
assembly code with the reference compiler. By using the -o flag, we managed to 
generate an output file, which was crucial for generating code since it allowed us to 
compare both sides. The second step was to actually understand how the CiviC VM 
worked, and we struggled a lot with understanding what a constant runtime pool 
actually means in relation to the CiviC VM. 

After some time, we understood that the CiviC VM consists of multiple tables, 
including import, export, global, and constant tables, and that each maps to a type 
of node. For example, a global definition would always be added to the global table, 
and each constant node above 2 would always be added to the constant table. 

After understanding these nuances, we started building out the code generator. To 
keep track of the indexes of each table, we keep track of globals: 

 

As you can see, we also have a string that we build up. This string will contain all the 
pseudo instructions for the tables. The next step is to actually increment these 
values in the globdef, vardecl, param, and globdecl nodes. Before incrementing, we 
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need to store the index somewhere so that var/varlets can have access to the 
correct table entry.  

To do this, we create a new STE attribute called 'assembly_index' which will store 
this information for us. Because all var/varlets are linked with the STE's, we can 
access the correct table index, but only have to determine the correct instruction. 
This is simply a set of if statements that check the node type. 

Everything afterwards was quite straightforward. Eventually, after testing and 
comparing the reference compiler bytecode with ours, we created our own tests. 
These captured some edge cases: 

●​ core.cvc: Contains our civic core.cvc code (without the rest since we did not 
manage the extensions)  

●​ complex_if.cvc: Contains a complex if statement where we test if-else 
statements  

●​ casting.cvc: We further tested casting values to make sure the values are still 
the same 

●​ nested_loops.cvc: We nest different types of loops in each other to make sure 
we did not do anything wrong in the loop transform 

 

REFLECTION 
We started the semantic phase in a very improvised manner without really designing 
the process. Fortunately, we got the hang of this midway through the context 
analysis, where we designed and thought out the entire process before proceeding. 
This meant taking a helicopter view and looking further down the process to 
determine what would be useful and what was redundant. The result was that we 
were able to create useful functions like the lookup functions (which come in two 
variants) that saved us a lot of time. We could now also order the traversals in the 
most optimal way, such as for example initializing the induction variables from 
induction removal in the var initialize traversal. 
 
We recognize that there were opportunities for improvement in our approach. For 
example, we dedicated a lot of unnecessary time to array initialization, which could 
have been better allocated towards implementing function overloading. Despite this 
setback, we believe that our decision to design for all extensions (and attempt them) 
from the start was the right choice. Each component of our project builds upon one 
another, and not doing so would have been a risky move since there was a 
possibility that we were able to do one or more extensions if time allowed for it. 
Overall, we are pleased with our end result. 
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