LLMs to Automatically Refactor
Green Code Anti-Patterns

Saif Rashed

saif.rashed@student.uva.nl

Feb 3, 2025, 42 pages

Academic & Daily supervisor: Dr. AM. (Ana) Oprescu , a.m.oprescu@uva.nl

Host organisation/Research group: CCI, https://cci-research.nl/

X UNIVERSITEIT VAN AMSTERDAM
ll FACULTEIT DER NATUURWETENSCHAPPEN, WISKUNDE EN INFORMATICA
X MASTER SOFTWARE ENGINEERING

http://www.software-engineering-amsterdam.nl

mailto:saif.rashed@student.uva.nl
mailto:a.m.oprescu@uva.nl
https://cci-research.nl/
http://www.software-engineering-amsterdam.nl

Abstract

The World Bank Group estimates that the IT sector is responsible for 1.7% of global CO5 emissions. The
European Union aims to achieve climate neutrality by 2050. But, more fundamentally, the observation
known as Moore’s Law, which states that computing power doubles every two years, has come to an end.
These factors are driving innovation in software energy performance as the demand for compute increases.
This work explores automated software refactoring for energy efficiency by using large language models.
First, we introduce a modular multi-stage pipeline called Refacturbo that can identify and refactor green
anti-patterns. Green anti-patterns are recurring code constructs that lead to excessive energy use. Static
analysis can be used to detect certain segments in source code containing these efficiency problems. By
creating targeted prompts from these segments, and passing them to a large language model, we can
refactor the code segments by replacing the original code with the generated solution. In the experiments
on three selected anti-patterns, if-else chains, string concatenation in loops and excessive boxing, the
generated optimizations consistently lower the energy use significantly, achieving an average energy cost
reduction of 82%, ranging from 64% up to 90%. Although there is not one prompting strategy that
dominates over the others, this study demonstrates that there is a feasible path forward in automated
refactoring of energy intensive code segments.

Contents

1 Introduction 4
1.1 Context o e 4
1.2 Problem statement 4
1.3 Research questions e 4
1.4 Research method L 5
1.5 Contributions e e e e 5
1.6 Scope . . . o 5
1.7 Outline e e e e 5

2 Background 6
2.1 Enmergy-efficient software 6

2.1.1 Code Efficiency Standards Lo 6
2.1.2 Performance refactoring Lo 6
2.2 Large Language Models e 7
2.2.1 Architecture e 7
222 Training Lo 8
2.2.3 Energy evaluations L 8
2.3 In-Context Learning (ICL) 9

3 Development of an automated LLM refactoring system 11
3.1 Imtroduction e 11
3.2 Requirements L e e 11
3.3 Design oL e e e 13

3.3.1 High-level overview L e 13
3.3.2 Architecture e 13
3.4 TImplementation e 14
3.4.1 Tools e e 14
3.4.2 Analysis oL 14
3.4.3 Processingo e 16
3.5 Validation e 17
3.6 Limitations 17
3.7 Conclusion e 17

4 Methodology for evaluating prompting strategies on energy consumption 18
4.1 Experiment tasks oL 18
4.2 Experiment designo e 19

4.2.1 Variables 19

4.2.2 Hypothesis 19

4.2.3 LLM selection e e e e 19

4.2.4 Prompt templateo 19

4.25 Ruleselection L 19

4.3 Experiment operation Lo 20
4.3.1 DUT specification e 20

4.3.2 Instrumentation e 21

4.4 Statistical analysiso 22
5 Results 23

CONTENTS

5.1 Baseline measurement Lo Lo 23
5.2 P1: The use of an if-else chain instead of switch case 23
5.2.1 Normality Testing e 24

5.2.2 Hypothesis Testing L e 25

5.3 P2: Creation of text using string concatenation 25
5.3.1 Normality Testing e 26

5.3.2 Hypothesis Testing e 26

5.4 P3: Excessive boxing of a primitive L 27
5.4.1 Normality Testing e 28

5.4.2 Hypothesis Testing L 28

6 Discussion 29
6.1 Threats to validity e 29

7 Related work 31
8 Conclusion 32
8.1 Future directions L e 32
Bibliography 34
Appendix A Prompt templates 38
Appendix B Anti-pattern rules 39
Appendix C Programs 41

Chapter 1

Introduction

1.1 Context

If we look from a global perspective, we see that the World Bank Group reports in 2022 that smartphone
usage accounts for 23 terawatts of electricity use and PCs consume 392 terawatts. This totals to an
amount of 415 terawatts [1]. And the report also states that the I'T sector is accountable for approximately
1.7% of global CO2 emissions.

If we look from a European perspective, we can see that there is a target set by the European Union
to achieve carbon net neutrality by 2050 [2]. And even more fundamental is the observed end of Moore’s
law [3, 4], an observation that states that compute doubles every two years.

These factors push the industry to create performance efficiency solutions. And in the case of software,
this means to produce code that is more energy-efficient.

1.2 Problem statement

Software is becoming a crucial element of modern systems and what makes software unique is the scale.
In a paper by Balanza-Martinez et al. [5] the authors show an example with Google, stating that if a
small change is made at the application level exponential savings can be made if this change is deployed
to all the devices. One practical way to make code energy efficient is by refactoring the software code,
restructuring it while maintaining its external behavior [6].

Energy reductions can be achieved by targeting specific recurring problems in code. These anti-
patterns can be detected with static analysis tools [7]. However, refactoring these patterns into optimized
versions is a non-trivial task. It requires the developer to know and understand what impact a certain
change has on the overall software system [3, 8]. And above all, it is a delicate process whereby the
developer has to apply a change while it maintains the same functional behavior externally, requiring
time and effort.

Large Language Models as a technology offers new opportunities in quickly refactoring code and have
shown the ability to do so [9-11]. However, with its benefits for quick refactoring and compatibility
with diverse programming languages, prior studies have shown that it is inconsistent in providing energy
efficient code after being given a simple instructive prompt [12, 13]. However, studies also show that if
you provide this model with a more descriptive description of the task it should solve, it is in fact able to
improve its performance [9, 14, 15]. This shows us at least a gap whereby existing static analysis efforts
can be combined with these models to make more targeted prompts in order to improve the effectiveness
of refactoring in terms of software efficiency.

1.3 Research questions

The main goal of this research is to automate energy-related refactoring by using large language models.
In order to solve this problem and fill in the research gap stated earlier, two research questions have been
created.:

CHAPTER 1. INTRODUCTION

e RQ1: How can a system be designed and implemented to use LLMs for automatically refactoring
code anti-patterns?

e RQ2: How do different prompting strategies affect the energy consumption of code refactored from
unoptimized versions?

The first research question is focused on the problem of automating refactoring and how a system can
be created that is able to do this. The second question is about the evaluation of the LLMs ability to
create energy efficient code. To see what prompts are able to reliably create energy efficient code.

1.4 Research method

For RQ1, a method called action research will be used to investigate an issue while it is being solved.
Here, a system will be developed and validated using a set of automated tests. For RQ2, a quantitative
experimental design will be used. In this method, we use hypotheses and variables to evaluate LLM
generated code on energy use. By doing these both separately, this study is able to give a solution for
automated refactoring while providing empirical quantitative results for different prompting strategies
in energy consumption.

1.5 Contributions

This study makes the following contributions:

1. Automated LLM-driven refactoring system

Source code

Test suite

Established anti-pattern rules
Prompts for refactoring

2. Energy evaluation of prompt strategies

e Energy measurement instrumentation
e Data on energy consumption for different prompt strategies
e Replication package

1.6 Scope

The scope of this research encompasses the following topics: static analysis, LLMs and prompt engineer-
ing and energy-related code patterns. Any content from these topics that are included in this dissertation
have some purpose in solving the main objective of this research, stated in section 1.3.

1.7 Outline

This report is organized in several chapters. Chapter 2 will go into background information for this
study. Chapter 3 will explain and show the design and implementation of the automated refactoring
system called Refacturbo. Chapter 4 will go into the evaluation methodology used to measure energy
consumption for different prompting strategies. Chapter 5 will show and present the results from the
energy experiments. The Chapter 6 will provide a discussion on these results and answer both research
questions. And Chapter 8 will conclude the research and provide future directions. Any material used
can be found in the appendices. The collected results for the experiments can be found in the replication
package! and the main system used to do the automated refactoring can be found in a public repository
2

Thttps://github.com/saifrashed /refacturbo-experiment
2https://github.com /saifrashed /refacturbo

Chapter 2

Background

2.1 Energy-efficient software

In this chapter we will briefly look at code efficiency standards and prior studies trying to make code
efficient using refactoring as the technique.

2.1.1 Code Efficiency Standards

The International Organization for Standardization has published an ISO specification ! listing code
weaknesses. One of the tables included in the specification is performance efficiency. Performance
efficiency is defined by the standard as the ability for a software product to perform its functions in
a specified time and be efficient in the use of resources. They state that these resources can include
CPU, memory, storage and network devices. This standard originally came from the Consortium for
IT Software Quality 2. It was developed there as an automated source code measurement criteria. It
was later accepted by the Object Management Group 2 as a standard and later expanded to also show
general IT and embedded software weaknesses. This eventually merged into the Automated Source
Quality Measure Standard which was submitted to the International Organization for Standardization.

2.1.2 Performance refactoring

Refactoring for performance means to restructure code in a better and optimized version, without chang-
ing the external behavior, in order to improve the software in terms of time but also energy. Multiple
studies explore different strategies, they look at different tools and do empirical evaluations with the
focus on reducing the energy use of software. In the table below we summarize the identified studies in
this area. We show a short summary of the key findings based on the abstract.

Table 2.1: Table of Studies on Code Refactoring for Energy Efficiency

Study Focus Key Finding(s) Year
Le Goaer and SonarQube plugin (ecoCode) to Identifies energy-related code 2022
Hertout [16] detect and remove energy smells smells, improving energy effi-
in Android projects ciency in Android apps
Sehgal et al. [17] Refactoring approaches for Proposes refactoring techniques 2022
green software development to reduce energy consumption
in software
Sanlalp et al. [18] Energy efficiency of refactoring Certain refactoring combina- 2022
techniques in C# and Java for tions significantly improve en-
mobile devices ergy efficiency

SO: https://www.iso.org/standard /80623.html
2CISQ: https://www.it-cisq.org/standards/code-quality-standards/
30OMG: https://www.omg.org/

CHAPTER 2. BACKGROUND

Table 2.1: Table of Studies on Code Refactoring for Energy Efficiency

Study Focus Key Finding(s) Year
Ournani et al. [19] Impact analysis of refactoring Refactoring can lead to measur- 2022
on energy consumption able energy savings in software
systems
Hamdi et al. [20] A study of refactoring impact in Refactoring improves maintain- 2021
Android apps ability but energy impact varies
Sanlialp and Oz- Impact of refactoring on energy Refactoring techniques reduce 2020
turk [21] consumption across OOP lan- energy use, with language-
guages specific variations
Connolly Bree and ~ Comparison of inheritance vs. Delegation can be more energy- 2020
Cinnéide [22] delegation in terms of energy efficient than inheritance in cer-
efficiency tain contexts
Morales et al. [23] An energy refactoring approach ~ Proposed approach reduces en- 2018
for mobile apps ergy consumption in mobile ap-
plications
Kim et al. [24] Code refactoring techniques for ~ Specific refactorings lower en- 2018
embedded computing environ- ergy use in embedded systems
ments
Verdecchia et al. Empirical evaluation of refactor- Refactoring two different code 2018
[25] ing code smells energy impact smells improves energy effi-
ciency substantially
Sahin et al. [§] Empirical study on how refac- Some refactorings increase en- 2014
torings affect energy usage ergy consumption, others reduce
it
Pérez-Castillo and Impact of refactoring a specific Refactoring God Classes can 2014

Piattini [26]

type of class on power consump-
tion

negatively affect power effi-
ciency

These studies show that refactoring can lead to energy savings, but does not necessarily do so. It
depends on the domain or programming language, so the impact differs. However, what it does show is
that refactoring has the ability to reduce energy costs. And this shows us at least that it is worthwhile
to investigate and find the correct problematic patterns that can lead to the most energy savings.

2.2 Large Language Models

A large language model is an artificial intelligence system with the ability to predict the most probable
next word for a provided input [27]. These models use a combination of GPUs and CPUs and can be
run on a personal computer or at scale be distributed in a cloud architecture. This technology has been
developed in order to help users with natural language tasks, providing users the ability to ask questions,
receive answers, write text, translate language or even write code.

2.2.1 Architecture

The transformer is a deep neural network architecture design introduced by researchers at Google [28].
It uses attention mechanisms to understand the relationship between words in a sentence.

CHAPTER 2. BACKGROUND

Make Make efficient e 89.11%

this this

code this code

energy energy energy

5
&
000

energy

Figure 2.1: A visual explainer of the Transformer architecture [29]

At first, when text is input ingested by the model, it is divided into tokens. The tokens are mapped
to embeddings. These embeddings are vectors containing numerical values. These represent the meaning
and position of the token. After, the embeddings are pulled through a series of transformer blocks. A
transformer block contains a multi-head self-attention. A multi-head self-attention has multiple heads,
and these relate tokens with each other. The processed embedding is then passed through a multilayer
perceptron that further refines the embedding. After passing through all the transformer blocks, the
token embeddings are now influenced by each other and have now encoded the sentence context. Finally,
the last contextualized token embedding is used to predict the next most probable word.

2.2.2 Training

Before a transformer becomes a large language model it has to be trained. The training is divided into
two phases [27, 30, 31]. The first phase is called pretraining, where an algorithm and a dataset are
used to train the transformer. The dataset is a corpus of text extracted from the internet. It is fed
into the model and the model tries to predict the next word at each step. By doing this it is able to
correct the weights according to the sequence of the text. This type of learning is called self-supervision
because there is no necessity for a human to label data. The text sequence itself, the structure, serves
as the supervision. Anything that happens after pre-training can be considered post-training. It has
processes such as fine-tuning, where a pre-trained model is further trained on a smaller and more task-
specific dataset to adapt it to a particular application. However, this phase is often supervised, meaning
that a human has to label the data beforehand.

2.2.3 Energy evaluations

Evaluating a large language model on energy efficiency has become much more important now. This
is due to the fact that higher energy expenses make for less usable and scalable models [32]. We can
evaluate energy use of the large language model on three different areas. The first is training, second is
inference, and third is generated code. For this study we will look at inference and generated code.

Inference

Inference is the process where a large language model predicts a response based on unseen data. This is
in part controlled by a temperature parameter. The temperature parameter can be adjusted to control
the randomness of the output. The main focus of energy evaluations have been mostly been about model
training. However, the operational energy cost during inference also plays an important part. This is
difficult to measure because the hardware infrastructure, the software optimizations and API level traffic
all play a co-founding role in the energy use of the model [32]. This makes it hard to do a fair comparison
between the models. It is even more challenging when we consider that privately held companies keep
these internal engineering details secret. However, a study from Samsi et al. [33] runs Llama models on
their own architecture and demonstrate that different hardware configurations can shift energy use. They

CHAPTER 2. BACKGROUND

show that prompt design and length has some effect on the cost of energy for inference. For example, one
study by Rubei et al. [34] looked at the impact of several different prompt variations for three different
prompt methods. It finds that reorganizing prompts into tags can lower the energy cost.

Generated code

LLMs are increasingly used to generate code, triggering new studies to evaluate efficiency of generated
code [12, 13, 35-37]. Note that efficiency is considered broadly; some studies, such as Shypula et al. [38],
evaluate code efficiency based solely on time rather than energy.

Table 2.2: Table of Studies on LLM Code Efficiency

Study Focus Key Finding(s) Year
Qiu et al. [37] Efficiency evaluator with ex- LLMs struggle to produce 2025
pert created algorithms and test expert-level efficient code, with
cases for multiple LLMs eff@k metric showing deficien-
cies
Cappendijk et al. Prompt modification for energy- No single prompt consistently 2024
[12] efficient code generation reduces energy consumption
across problems and LLMs
Peng et al. [39] LLMs as code optimizers for LLMs improve energy efficiency 2024
energy efficiency for multiple programs
Huang et al. [36] A benchmark with 1,000 LLM-generated code is less effi- 2024
efficiency-critical coding prob- cient than human-written solu-
lems tions, with GPT-4 up to 13.89x
slower
Liu et al. [35] Benchmark for efficient code LLMs benefit from instruction 2024
generation tuning for efficiency, but scaling
law does not apply
Cursaru et al. [13] Controlled experiment on en- Human-written code is gen- 2024
ergy efficiency of Code Llama- erally more energy-efficient;
generated code explicit energy prompts may
worsen efficiency
Vartziotis et al. Empirical study on sustainabil- LLMs show limited sustain- 2024
[40] ity of LLM-generated code ability awareness, with varying
green capacity across models
Shypula et al. [38] Framework for adapting LLMs LLMs achieve a mean speedup 2023

to high-level program opti-
mization using performance-
improving edits

of 6.86, close to the human up-
per limit of 9.56

These studies show that large language models consistently generate code that is less efficient than

human written solutions across different benchmarks and metrics, despite advancements in frameworks
for evaluating it. However while specific prompt adjustments or model configurations can sometimes
improve efficiency for certain specific problems, there is not a single consistent way of prompting the
large language model that has shown to reliably produce energy-optimized code.

2.3 In-Context Learning (ICL)

In-Context Learning is a method to train a large language model on new tasks without the requirement
to change the internal structure of the model with post-training methods like fine-tuning [41]. It involves
the construction of a prompt by having a query concatenated with context. This context contains
demonstrations for a specific task in a natural language template. The model then uses this to infer the
task and make predictions. A study by Raventds et al. [42] suggests that this is an emergent property of
large language models. It arises when pre-training task diversity exceeds a certain amount, allowing the
model to generalize to unseen tasks. There are several types of prompting methods. First of all, there

CHAPTER 2. BACKGROUND

is zero-shot prompting. It instructs the model to execute a task with simply a descriptive instruction,
without examples. One-shot prompting improves on this by including a single example. Few-shot
prompting provides multiple examples and can be used by the model to establish a pattern [14]. Last
but not least, there is chain-of-thought prompting. This instructs the model to address a task by having
it reason through explicit steps [15]. However, despite these benefits, ICL has some limitations [41]. The
first is the computational cost increase with more demonstrations, particularly for long-context models.
It relies on high-quality examples, which can be challenging to find in situations where these are not
available. And adding more demonstrations can have diminishing or negative results, especially if the
context becomes overwhelmingly large or if the examples are not well selected.

10

Chapter 3

Development of an automated LLM
refactoring system

In this chapter we introduce Refacturbo !, a system that was created to automate refactoring of code
anti-patterns by using large language models. The conclusion will answer the first research question.

3.1 Introduction

Sustainable software engineering research shows us that there are recurring code patterns that lead to
higher energy consumption [16-19, 21, 23, 24, 43]. One way to get rid of these anti-patterns is through
the method of refactoring. This is a technique where code is restructured, rewritten into an optimized
version without changing its external behavior. Refactoring green anti-patterns starts with detecting
them in the code. In a thesis, Sommerhalter [7] shows that these green anti-patterns can be found using
a static analysis engine called Semgrep. The system it proposes, named Calabash, has the ability to
detect multiple types of anti-patterns in medium to large open source projects, showing that it is able
to work at scale.

After detecting these code patterns, large language models can predict optimized versions. These
language models have shown promising results in the ability to refactor code [9, 11]. One example, in
Liu et al. [9], demonstrates that by having a more detailed description of the desired refactoring increases
the success rate substantially. In contrast, studies such as those by Cursaru et al. [13] and Cappendijk
et al. [12] show that simple prompts, only containing an instruction with no examples, are unable to
consistently reduce the energy cost for code. Likely due to the broad search space for the language model
to infer a solution. This tells us that the large language model does not, in fact, have a notion of energy
efficiency in terms of code. It is only able to project that what it statistically calculates to be most
probable, based on the provided input. This suggests that the notion of energy efficiency is something
that needs to be provided in the examples in order to train the model in context.

A challenge with large language models is verifying that the generated changes still behaves function-
ally the same, and does not introduce new syntax errors or fail in unique cases. It cannot be guaranteed
that the results of a large language model is always the same [9, 11]. This inherent variability shows the
need for a human-in-the-loop step, in order to mitigate the risks of error. All around, to address these
points, we propose Refacturbo, a system that is designed to connect the static analysis efforts with large
language model refactoring. By combining these tools, we are able to create a process that is able to
detect code anti-patterns, generate prompts based on the detected patterns, and automatically refactor
and replace the code with an optimized version.

3.2 Requirements

Refacturbo has 6 functional and 5 non-functional requirements. The requirements are explained with a
short rationale.

FR1 The system must perform static code analysis using a predefined set of rules to detect
code patterns.

I Refacturbo: https://github.com/saifrashed /refacturbo

11

CHAPTER 3. DEVELOPMENT OF AN AUTOMATED LLM REFACTORING SYSTEM

FR2

FR3

FR4

FR5

FR6

This requirement ensures the tool automatically identifies code segments given a specification
of the pattern structure, such as those patterns documented in previously named studies from
Sommerhalter [7] and Feitosa et al. [43].

Static code analysis findings should include metadata including line numbers and file
paths.

Including this metadata enables an accurate mapping between the identified anti-patterns and their
exact location in the code base. This is important for doing code replacement at FR6.

The system must convert findings into remediation prompts.

Each finding is turned into a prompt that describes how to refactor a specific code snippet. Studies
have shown that detailed prompts with relevant code context produce more accurate and targeted
refactorings [9, 14, 15], so the prompt file will include a query and corresponding code snippet.
The system must send prompts to a configured large language model and receive
refactored code snippets.

By using large language models, the system can automate modifications that are otherwise labor-
intensive [9, 11]. This requirement is the main functionality of Refacturbo, generating improved
code versions.

The system must include a human-in-the-loop step to validate generated refactorings
before applying them.

Generated code transformations can introduce unintended changes or errors [9, 11]. Having a
human review before finalizing ensures the system remains reliable and preserves functionality.
The system must replace the detected code segments in the original files with refac-
tored code.

Once the large language model provides changed code, the system must integrate it into the source
files using the metadata from FR2. Automating this process saves developer time and prevents
manual errors [8].

In addition to the functional specifications, Refacturbo will have non-functional requirements that
align with the maintainability standards recommended by ISO/IEC 25010, specifically focusing on mod-
ularity, reusability, analyzability, modifiability, and testability. Including these ensures longevity
for the system.

NFR1

NFR2

NFR3

NFR4

NFR5

Modularity

The architecture should be separated into components that are responsible for specific functional-
ities. This makes development and maintenance easier by keeping changes isolated.

Reusability

While the system is specifically built for detecting green anti-patterns, it should have the ability
to be used for other tasks requiring detection and transformation of code. This makes the system
applicable to a wider variety of problems.

Analysability

During every step of the pipeline, output should be stored and saved for facilitating analysis and
data collection. Additionally, this helps in tracing and identifying technical errors.
Modifiability

Changing the system for new requirements should be flexible and not introduce new bugs. This
helps prevent the need for future system overhauls.

Testability

The design must enable the testing of individual components and their interactions. This includes
unit testing of isolated programs and integration tests for the complete workflow.

12

CHAPTER 3. DEVELOPMENT OF AN AUTOMATED LLM REFACTORING SYSTEM

3.3 Design

This section will go into the design of Refacturbo, basing it off the requirements listed before. We first
have a high-level overview of the system, followed with the architecture.

3.3.1 High-level overview

- &

Source

LLM response

o i -__Fccd "
Input_prompts

|

Source

Feed into

Figure 3.1: High-level overview

Refacturbo is organized as a two-stage modular pipeline (Figure 3.1). In the Analysis stage, the system
begins by scanning source code with a static analysis tool, to identify potential anti-patterns based on
predefined rule sets. In the Processing stage, these prompts are fed into a configured LLM. Once the
LLM returns the suggested transformations, the snippets are used to replace the original code. This
separation of analysis and refactoring aligns with NFR1 (Modularity) by having minimal coupling in
between components.

3.3.2 Architecture

Analysis Processing

Rules Prompts
ProcessCodePrompt
B [| .
P# fic analysi resuits analysia %*"_ui'—»{ Generatelnput ‘ CheckCodeValidity

source

D
AN
Code
snippets
finalize

1
-

source

B
©

ila

Figure 3.2: Conceptual architecture diagram

The architecture shown at Figure 3.2 is designed to fulfill the non-functional requirements:

1. Modularity: Achieved via two-stage design, but also by being divided in separate componentss.

2. Reusability: The rule sets are customizable in a way that they can be easily modified or extended
for non-green anti-patterns.

3. Analysability: Facilitated by storing artifacts in a shared data folder for tracing and inspection.
This is not explicitly shown in the diagram.

4. Modifiability: By having customizable rules with a prompt field, the system can be changed to
accommodate future requirements.

5. Testability: Simplified through distinct scripts that allow for unit and integration testing.

As stated in Analysability, this architecture requires a shared data folder to ensure NF3 is met.
This data folder should contain static analysis findings, generated prompts, model input, and the model
generated output. This encompasses every type of generated data within the pipeline.

13

CHAPTER 3. DEVELOPMENT OF AN AUTOMATED LLM REFACTORING SYSTEM

3.4 Implementation

This section covers the implementation of Refacturbo. First, we list the tools used during development
and the steps involved in implementing the system’s main components.

3.4.1 Tools

The Refacturbo system is built on a variety of inbuilt Python tools and open source projects in order to
address the functional requirements. First of all, for doing static analysis, we use Semgrep, a tool that is
able to detect code patterns based on a series of specifications defined by the user. In these rules, we are
able to add metadata such as a prompt for each pattern. It is also able to produce findings with metadata
needed for the subsequent steps, like line numbers, file paths, for each finding, allowing us to fulfill the
second requirement. Finally, it supports detecting Java code, which will be the subject language of the
experiments. Furthermore, we use Python, specifically via argparse, which is able to orchestrate the
pipeline’s programs through a command line interface. The components are called sequentially, one by
one, but they can be called separately from each other. For transforming the code, or refactoring the
code, we use the OpenAl Python client to interface with large language models. Testing will be done
with the unittest framework to validate the system’s functional correctness.

3.4.2 Analysis

rules:
— id: avoid—string—concat—in—loop
message: Avoid string concatenation in loop

languages: [java |
severity : WARNING
patterns:
— pattern—either:
— pattern: |
$STR = ...;
for (...) {
$STR += ;
}
}
metadata:
prompt: ”Avoid-string-concatenation-in-loop”

Figure 3.3: Example of a Semgrep Rule File

Rule dictionary: Rules are constructed according to the specifications of Semgrep 2. A Semgrep rule
file begins with a top-level key, which defines a list of rule objects that describe the code patterns that
should be detected. Each rule object contains fields such as “id” for unique identification, “message” to
communicate the rule’s purpose, “languages” to specify targeted programming languages, and “severity”
to classify the importance of any matched pattern. The “patterns” section governs the actual detection
logic, using directives like “pattern-either” to encode disjunctive matching conditions and “pattern-not”
to exclude certain contexts. Metavariables, such as “§STR” and “$F(...),” enable matching of variable
names and function bodies. The “metadata” key provides the user with the ability to fill in a prompt
that will be used at the LLM refactoring step.

2Semgrep rules: https://semgrep.dev/docs/writing-rules/rule-syntax

14

CHAPTER 3. DEVELOPMENT OF AN AUTOMATED LLM REFACTORING SYSTEM

{
"results”: |
{
?check_id”: ”src....rules.avoid—string—concat—in—loop” ,
77path77 . ” ”
: RN

Vstart”: {
”line”: 15,
?col”: b
?offset”: 438

}7

77end?7: {
”line”: 25,
?col”: 6,
?offset”: 783

Vextra”: {
?message”: " Avoid-string-concatenation-in-loop”,
"metadata”: {

?prompt” : ”Avoid-string-concatenation-in-loop”

}7
?severity”: "WARNING” ,
?fingerprint”: ”"requires-login”,
”lines”: ”requires-login”,
”validation_state”: "NO_VALIDATOR” ,
”engine_kind”: ”0OSS”

}

}
] K
}

Figure 3.4: Findings generated by Semgrep

Static analysis: Semgrep is invoked to perform a static analysis of the provided project directory,
relying on the set of scanning rules. This process depends on a properly configured environment where
Semgrep is installed, as well as the presence of the rules directory and the appropriate output path for
collecting the analysis results. If analysis is finished, a JSON is produced with all the findings.

// 0.txt (filename contains index to track)
Avoid string concatenation in loop

public static String generateFibonacciString(int numRepetitions) {
String result = 77
int a =0, b = 1;
for (int x = 0; x < numRepetitions; x++) {
result += a + (x < numRepetitions — 1 7 7 -7 : 77);
int next = a + b;
a = b;
b = next;

}

return result;

Figure 3.5: Generated prompt

Prompt generation: The analysis.py script parses the JSON output produced by Semgrep and trans-
forms each finding into a standalone textual prompt. The script loads the results data, identifies the
prompt text from within the metadata field of each result, and creates a file containing that content in
a dedicated output directory. It then correlates the specified file paths and line ranges to the relevant
source code and appends those snippets to the prompt. This procedure yields self-contained prompt files
that pair the prompt with extracted segments of code. The finding is linked to the prompt by using the
index as filename for the prompt text file.

15

CHAPTER 3. DEVELOPMENT OF AN AUTOMATED LLM REFACTORING SYSTEM

3.4.3 Processing

{
”prompts”: |
”? Avoid-string -concatenation-in-loop\n\n----public-static-String-
generateFibonacciString (int -numRepetitions)-{\n-------- String -result -=-
ANV AW\ \n- - - - - int-a-=-0,-b-=-1;\n-------- for-(int-x-=-0;-x-<-
numRepetitions; -x++)-{\n------------ result +=-a-+- (x-<-numRepetitions-—-1-7-
AR R R S R R S R R N T B B int-next-=-a-+-b;\n------------ a-=-b;\n
////////// b-=-next;\n--------}\n--------return-result;\n----}\n”
]
}

Figure 3.6: Input used in the processing phase

Prompt parsing: This step orchestrates the generate_input_json.py script to add all textual prompts
into a consolidated JSON file, input.json. The script gathers each prompt file from the prompts directory,
replaces any embedded quotes to preserve JSON validity, and constructs an in-memory dictionary keyed
by “prompts.” Afterward, it writes this structure to an export directory, yielding a single authoritative
file containing every prompt for use in subsequent steps.

public static String generateFibonacciString(int numRepetitions) {
StringBuilder result = new StringBuilder ();

int a =

0, b= 1;

for (int x = 0; x < numRepetitions; x++) {

result .append(a).append(x < numRepetitions — 1 7 ” -7 : 77);
int next = a + b;

a = b;

b = next;

}

return result.toString();

Figure 3.7: Final output

Generating output: The processing.py script coordinates LLM code generation and subsequent result
analysis, beginning with the InputProcessor’s loading of the input JSON. The prompts then pass to the
ProcessCodePrompt class, which delegates them to a LLM class. The class calls the server and generates
code that is temporarily stored, after which a human review step is initiated.

PROCEDURE ProcessJsonFile (analysisOutputFile, projectDir, modelOutputDir)

TRY

Open analysisOutputFile and read JSON data

FOR

each result in data[’results’]

Get index, path, startLine, endLine from result

// Fetch original code

Construct originalPath using projectDir and path

Read originalCode from originalPath

// Fetch refactored code

Construct refactoredPath using modelOutputDir and index

Read refactoredCode from refactoredPath

// Indent and replace code

Get indentation from originalCode [startLine —1]

Apply indentation to each line of refactoredCode

Replace lines in originalCode from startLine to endLine with indented
refactoredCode

Write modified code back to originalPath

END FOR
CATCH Errors
Output error

END TRY

END PROCEDURE

Figure 3.8: Pseudo code for replacing code.

16

CHAPTER 3. DEVELOPMENT OF AN AUTOMATED LLM REFACTORING SYSTEM

Finalize: The last step initiates finalize.py to complete the refactoring process by parsing the JSON
output from the analysis step, extracting each finding and collecting the meta data, and subsequently
replacing it with the LLMs refactored version. Specifically, the script locates and reads the relevant lines
in the original file, applies indentation to the newly generated code, and then rewrites the source file in
place. This ensures that the final updated code includes the LLM-refactored insertions exactly where
needed.

3.5 Validation

In order to assess whether or not the functional requirements are correctly met, a series of automated
tests will check if the system is correctly performing the refactoring. Not necessarily whether the large
language model is producing accurate code. In order to verify that refactoring is being done correctly,
we have it change simple code to maintain focus on the pipeline. In the testing scenarios, a combination
of unit and integration tests are used to verify correct program flow and the accurate representation
of the findings in the output reports. In specific, a test checks whether a rule was correctly found,
confirming that Semgrep has done its part, and after, whether the generated corrections are to be found
in the augmented source code as expected.

3.6 Limitations

The system falls short on the reliability and flexibility characteristics, specified in ISO/IEC 25010. The
first is the inability to handle multi-file anti-patterns. The current pipeline is only able to detect patterns
within a single file and not able to link these file findings across files, therefore making it harder to detect
architecture level anti-patterns. The inherent variability in large language models can occasionally lead
to incorrect syntax or incomplete updates. The system does not have a formal rollback mechanism in
order to restore old versions. From a performance perspective, large codebases have not been tested for
this system and they might experience long analysis and transformation times due to the sheer amount of
scanning and generative processing work. While Refactor does demonstrate maintainability for all sub-
characteristics, there are major limitations in other characteristics, thus showing the need for continued
improvement.

3.7 Conclusion

Refacturbo answers RQ1 by utilizing a static analysis engine that identifies anti-patterns, used in the
creation of targeted prompts. These prompts are then processed by an LLM to produce refactored code
that replaces the original code. A human-in-the-loop validation step ensures errors are caught before
automatically applying changes. This design demonstrates how LLMs can be systematically used to
detect and remediate code anti-patterns in a modular, two-stage pipeline.

17

Chapter 4

Methodology for evaluating
prompting strategies on energy
consumption

This study evaluates the energy efficiency of code generated with several distinct prompting strategies,
following an academic and structured methodology for energy experiments informed by the study 'A
Process for Analysing the Energy Efficiency of Software’ authored by Mancebo et al. [44]. We use the
seven phase energy measurement process as a guide for this study.

4.1 Experiment tasks

The experiment evaluates 12 configurations, derived from 1 LLM, 3 anti-patterns, and 4 prompting
strategies. The activities are ordered chronologically to facilitate reproducibility. The results of the
conducted experiments are included in the replication package®.

1.

Construct programs and prompts: We wrote a Java program for each anti-pattern. This is
the unoptimized version. After that, we implemented the prompting strategies.

Code Generation: We used the prompts to generate code variants with the selected large lan-
guage model.

Testbed Preparation: We prepared the Device Under Test (DUT) by disabling non-essential
processes, turning the internet and Bluetooth off, ensuring the battery was at 100%, and unplugging
external devices.

. Baseline Measurement: We measured the DUT idle power consumption by running the ’sleep’

command to establish a baseline. The mean energy consumption in Joules is calculated and stored
for the test case experiments.

Test Execution: We set the internal repetition rate to a value that increases program execution
time beyond 3 seconds in order to counter the limited sampling frequency of 2Hz. For each config-
uration, we execute the test case 50 times. Then we integrate the sample power with the composite
trapezoidal rule to calculate joules. The value is corrected for idle energy use.

Data Compilation and Cleanup: After each configuration run we compile the collected data
into CSV format. We clean the testbed by moving the generated files to their respective folder in
the replication package.

Data Analysis: We run statistical analysis on the collected compiled data, using the Shapiro-
Wilk test for normality and the Mann-Whitney U test to compare energy consumption between
unoptimized and optimized code variants.

IReplication package: https://github.com/saifrashed /refacturbo-experiment

18

CHAPTER 4. METHODOLOGY FOR EVALUATING PROMPTING STRATEGIES ON ENERGY
CONSUMPTION

4.2 Experiment design

4.2.1 Variables

We examine five independent variables: unoptimized code (baseline) and four optimized code variants.
The primary dependent variable is the mean energy consumption of each variant, computed to joules
and corrected for baseline idle energy consumption.

4.2.2 Hypothesis

The hypothesis for the experiments are shown below, where ftunoptimized 1S the mean energy consumption
of the unoptimized code, and fioptimized is the mean energy consumption of the optimized code.

1. Null Hypothesis (Hy): There is no statistically significant difference in mean energy consumption
between the unoptimized code and the optimized code.

Hy : Hunoptimized = Hoptimized (41)

2. Alternative Hypothesis (H;): The optimized code shows a statistically significant reduction in
mean energy consumption compared to the unoptimized code.

Hl * Munoptimized > Hoptimized (42)

If we observe a statistically significant difference in a one-tailed test, the null hypothesis can be re-
jected. We support the alternative hypothesis if the mean energy consumption of the optimized code is
significantly lower than that of the unoptimized code.

4.2.3 LLM selection

We use OpenAl’'s GPT-40 model with the temperature parameter set on 1.0. The reason for this is
primarily ease-of-use, public access via their official API, and high rankings in energy performance
benchmarks 2 [35].

4.2.4 Prompt template

We present a series of prompt templates in Appendix A in Figures 1 through 4. First, a zero-shot
template (Figure 1) provides only a descriptive task instruction where no examples are included. The
one-shot template (Figure 2) allows for a single example. The few-shot template (Figure 3) contains
a series of examples. Finally, the chain-of-thought template (Figure 4) includes reasoning steps with
answers.

4.2.5 Rule selection

In order to build a collection of substantiated anti-patterns we looked at a combination of sources. First
and foremost is the “Quality Measure Elements for Automated Source Code Performance Efficiency
Measure” in the ISO/IEC 5055:2021 standard for software quality measurement.® The standard itself
only contains specifications but it refers to the Common Weakness Enumeration (CWE) for more detailed
explanations. Additionally, we look at online sources such as EcoCode* and Sonar ® who both publish
a list of rule databases. In most cases these listed rules align with one of the specifications in the ISO
standard but this is not always explicitly stated in the descriptions. In order to identify valid and
applicable rules we make use of the conditions shared by EcoCode®. We did minor modifications to the
original rules to suit this study:

e It must be statically detectable.
e It should return single boolean response (True/False).
e It detects code that degrades performance efficiency (defined in ISO/TEC 5055:20217).

2https://evalplus.github.io/evalperf.html

3https://www.iso.org/standard/80623.html
4nttps://github.com/green-code-initiative/creedengo-rules-specifications/blob/main/RULES.md
Shttps://rules.sonarsource.com/java/RSPEC-3631/7search=performance
6https://github.com/green-code-initiative/creedengo-rules-specifications/tree/main/docs/rules
Thttps://www.iso.org/obp/ui/en/#iso:std:iso-iec:5055:ed-1:v1:en

19

https://www.iso.org/standard/80623.html
https://github.com/green-code-initiative/creedengo-rules-specifications/blob/main/RULES.md
https://rules.sonarsource.com/java/RSPEC-3631/?search=performance

CHAPTER 4. METHODOLOGY FOR EVALUATING PROMPTING STRATEGIES ON ENERGY
CONSUMPTION

The sources consist of explanations and in some cases mitigation and problem examples. These will
serve as source material for creating the prompts. Appendix B lists all selected rules.

P1: The use of an if-else chain instead of switch case

EcoCode and Sonar rule lists primarily highlight this anti-pattern. FEcoCode explains that a chain of
if-else statements triggers more comparisons for the JVM, which degrades performance. The Sonar rule
list recommends using a switch statement to address this issue and potentially boost performance. Sonar
offers four non-compliant and four compliant examples for this rule.

P2: Creation of text using string concatenation

This pattern involves the '+=" operator within a LOOP construct to build a string, aligning with the
CWE-1046® specification. The Common Weakness Enumeration warns that this string-building method
creates a new object after each iteration, which slows program performance. To mitigate this, it advo-
cates using a text buffer data element. In Java, this corresponds to 'StringBuilder’® and ’StringBuffer.’
However, Sonar advises!? against synchronized classes like StringBuffer, as they significantly hinder per-
formance, a point reinforced by the Java documentation for JDK 5 enhancements ''. Sonar provides one
compliant and one non-compliant example.

P3: Excessive boxing of a primitive

This pattern appears in programs where developers box primitives with an unnecessary extra step, align-
ing with the CWE-1235'2 specification. The specification notes that auto-boxing incurs a performance
cost and should only be used in specific cases. Thus, eliminating redundant boxing boosts performance.
CWE offers one compliant and one non-compliant example.

4.3 Experiment operation

4.3.1 DUT specification
The Device Under Test (DUT) specifications are provided in Table 4.1.

Parameter Value
Software
Operating System macOS Sequoia 15.4 (24E248)
Unix Kernel Darwin Kernel Version 24.4.0
Java Version JDK 21
Hardware
Computer MacBook Pro 13-inch, 2018 (C02XHQ2WJHCS)
CPU Intel Core i5 2,3 GHz Quad-Core
RAM Type 2133 MHz LPDDRS3
RAM Capacity 8 GB
GPU Intel Iris Plus Graphics 655 (1536 MB)

Table 4.1: Specification of the Device Under Test (DUT).

We rely on the Intel-based architecture of the device, using an in-built interface for power monitoring.
However, energy measurements on newer Macbook models with the Apple M-series chips are not as clearly
defined, as these chips lack an equivalent hardware-level energy monitoring sensor.

Shttps://cwe.mitre.org/data/definitions/1046.html

9https://docs.oracle.com/javase/8/docs/api/java/lang/StringBuilder.html
Ohttps://rules.sonarsource.com/java/RSPEC-3631/7search=performance
Hhttps://docs.oracle.com/javase/8/docs/technotes/guides/performance/speed.html
2https://cwe.mitre.org/data/definitions/1235.html

20

https://cwe.mitre.org/data/definitions/1046.html
https://docs.oracle.com/javase/8/docs/api/java/lang/StringBuilder.html
https://rules.sonarsource.com/java/RSPEC-3631/?search=performance
https://docs.oracle.com/javase/8/docs/technotes/guides/performance/speed.html
https://cwe.mitre.org/data/definitions/1235.html

CHAPTER 4. METHODOLOGY FOR EVALUATING PROMPTING STRATEGIES ON ENERGY
CONSUMPTION

4.3.2 Instrumentation

Approaches for software energy use involve measurement or modeling. Measurement, which can be
hardware-based or software-based, directly captures consumption through power monitors or processor
features at a specified sampling rate; hardware-based measurements, though less invasive and more
accurate, rely on external tools that can be costly [44, 45], whereas software-based approaches, are more
accessible but prone to estimation errors. We make use of Intel’s Running Average Power Limit interface,
which uses on-chip sensors and model-specific registers for energy monitoring [45].

According to Stoico et al. [46], the principal physical quantities for measuring energy in software
execution are electrical energy and power, with energy defined by the International System of Units
(SI) and power representing energy consumed per unit time (in joules per second). The fundamental
relationship of energy use is given in the equation below, where the energy (joules) equals the product
of power (watt) and time (seconds):

Energy(J) = Power(W) x Time(s) (4.3)

To estimate the energy consumed, the instrument must be capable of measuring both power and time
during a test. To achieve this, two components have been developed to automate measurements.

Sampler

In order to capture real-time power consumption metrics on an Intel-based macOS system a script was
created, using the powermetrics utility at 2Hz (500 ms) sampling intervals 3. Before running a target
command, powermetrics is started in the background to measure combined CPU and GPU power usage.
Each reading is timestamped and appended in comma-separated format to an output file, resulting in
a record of power consumption. After the target command is finished, the powermetrics process is
terminated.

Orchestrator

The Orchestrator is a Python CLI script that automates the measurement workflow by coordinating
repeated runs of a target command, collecting power readings, and computing the final energy metrics.
First, it invokes the measurement script multiple times with cooldown intervals, logging power consump-
tion samples over time. These samples are integrated using the composite trapezoidal rule to obtain
energy consumption of the measurement [47].

Z P(t;) + P(ti1)

5 . (ti+1 — ti) (4.4)

tn
Emeasurement = / P(t) dt ~
b i=1

Where:

® Feasurement: Approximate total energy measured over the time interval from ¢; to t,.
e P(t): Power function (a continuous function of time t) to be integrated.

e {1: Initial time point of the integration interval.

e t,: Final time point of the integration interval.

e {;: i-th time point in the sequence of n subintervals.

e P(t;): Value of the power function at time ¢;.

e P(t;11): Value of the power function at time #;41.

e t;11 — t;: Width of the i-th subinterval (time step).

e n: Number of subintervals used in the approximation.

Essentially, by averaging the first and second power value in a time step, and multiplying it by the
time difference, a trapezoid is approximated under the curve. The sum of these gives total joules. If
the baseline time and power constants are set, the script subtracts the baseline consumption term from
the measured consumption to calculate the corrected energy consumption. The calculation for a time
independent baseline measurement is provided by Mancebo et al. [44].

3Powermetrics: https://firefox-source-docs.mozilla.org/performance/powermetrics.html

21

CHAPTER 4. METHODOLOGY FOR EVALUATING PROMPTING STRATEGIES ON ENERGY
CONSUMPTION

ECBaseline Vel
Ebaseline = =X TMeasurement (45)
Baseline

Ecorrected = Emeasurement - Ebaseline (46)

This yields the net energy usage attributable to the target command. However there is a error margin
due to a delay in calling the target command. The delay can be considered problematic if it is not
stable; however, if stable, it can be treated as a fixed offset, negligible in group comparisons. Finally, the
Orchestrator compiles summary statistics and performs normality checks to support subsequent analysis.

4.4 Statistical analysis

To assess data distribution and compare sample groups, several tests are used. First, to decide whether
data follows a normal distribution and thus justifies parametric statistical methods, the Shapiro-Wilk
test is applied [48]. If the Shapiro-Wilk test suggests non-normality, we use the non-parametric Mann-
Whitney U test [49]. However, if data is found to be normally distributed, a two-sample ¢-test can be
used to compare the means of two independent groups [50].

Shapiro-Wilk Test

We use the Shapiro-Wilk test to evaluate whether a given sample comes from a normally distributed
population [48]. The test generates a p-value that can either be above or below a significance threshold. If
it is below the data is non-normal, conversely, if it exceeds the threshold, the data is normally distributed.

t-Test

The t-test [50] compares the means of two independent samples and can only work if the sample is
normal. The outcome of the test is a p-value that indicates whether the difference in two samples is
statistically significant. If the Shapiro-Wilk test confirms that both samples follow a normal distribution
and the t-test p-value is below 0.05 the difference can be considered significant.

Mann-Whitney U Test

The Mann-Whitney U test [49] is a non-parametric test, this implies that it can be applied when the
data is not normally distributed, and thus fails the Shapiro-Wilk test. As with the t-test, a p-value is
calculated. If this p-value is below 0.05 the difference can be considered significant.

22

Chapter 5

Results

In this chapter we present the results from the energy experiments.

5.1 Baseline measurement

Table 1.1 shows the baseline energy measurements recorded for the device at idle. The mean idle energy
consumption was 18.71 Joules with a median of 18.63 Joules. The standard deviation was 1.59. This
indicates a slight variance around the mean. The minimum and maximum energy use was 17.15 Joules
and 28.16 Joules. This suggests that while almost every sample clustered around the mean, some values
pushed the upper bound higher.

Table 5.1: The energy consumption (J) of idle DUT measurement.

Metric Value
Mean 18.71
Standard Deviation 1.59
Median 18.63
Min 17.15
Max 28.16
Coefficient of Variation (%) 8.52

Overall, these baseline figures show that at idle the device has some variance in energy use. This
could likely be due to changes in system processes, the operating state, or possibly background tasks.

5.2 P1: The use of an if-else chain instead of switch case

Table 5.2: The duration (s) of profiling for P1.

Prompt Unoptimized Zero shot One shot Few shot CoT
Mean 3.87 0.50 0.50 0.50 0.50
Standard Deviation 0.23 1.50e-3 1.10e-3 1.10e-3 1.30e-3
Median 4.02 0.50 0.50 0.50 0.50
Min 3.52 0.50 0.50 0.50 0.50
Max 4.03 0.51 0.51 0.51 0.51
Coefficient of Variation (%) 6.02 0.30 0.22 0.21 0.26

The unoptimized variant has an average profile duration of 3.87 seconds with a standard deviation of
0.23. In contrast, all the optimized versions show a lower average duration at around 0.50 seconds with

23

CHAPTER 5. RESULTS

small variation. The coefficient of variation is higher for the unoptimized run than for the optimized
code. This indicates much more consistent timing for the latter.

Table 5.3: The power (W) during profiling for P1.

Prompt Unoptimized Zero shot One shot Few shot CoT
Mean 17.60 20.39 20.50 20.58 20.18
Standard Deviation 0.22 1.19 1.07 0.96 1.07
Median 17.62 20.05 20.71 20.76 20.22
Min 17.12 19.16 19.04 19.19 18.91
Max 18.12 25.52 24.00 23.16 23.29
Coefficient of Variation (%) 1.22 5.84 5.22 4.67 5.32

The unoptimized code uses the least power with 17.60 Watt and it has a low standard deviation of
0.22. The optimized code variants use more power, approximately 20 Watt, but it shows much more
variability due to the standard deviation range between 0.96 Watt and 1.19 Watt. The coefficient of
variation is the least for the unoptimized version 1.22% and generally higher for the optimized code
versions. This means that there is more spread relative to the mean for the optimized versions.

Table 5.4: the corrected energy consumption (J) for P1.

Prompt Unoptimized Zero shot One shot Few shot CoT
Mean 49.22 7.91 7.97 8.01 7.82
Standard Deviation 2.98 0.59 0.54 0.48 0.54
Median 50.69 7.73 8.10 8.11 7.83
Min 43.98 7.28 7.25 7.31 7.19
Max 53.22 10.43 9.74 9.31 9.49
Coefficient of Variation (%) 6.06 7.52 6.78 5.97 6.94

The unoptimized variant consumes 49.22 joules with a standard deviation of 2.98. The optimized
code versions consistently have lower and more stable energy consumption. Furthermore, the optimized
variants show relatively small spread, with a standard deviation under 0.60 joules.

Table 5.5: Percentage reduction in corrected energy consumption compared to
unoptimized code for P1.

Prompt Zero shot (%) One shot (%) Few shot (%) CoT (%)
Reduction 83.93 83.81 83.73 84.11

Each optimization achieves a reduction of approximately 83% in comparison to the unoptimized code.
The lowest being the few shot optimization and the highest being the chain of thought optimization.
However, the differences are minor.

5.2.1 Normality Testing

Table 5.6: Shapiro-Wilk P-values for P1

Unoptimized Zero shot Omne shot Few shot CoT

0.0000 0.0000 0.0015 0.0648 0.0001

24

CHAPTER 5. RESULTS

The samples for the unoptimized, zero shot, one shot and chain of thought are all non-normal, due to
having a p-value beneath 0.05. However, the few shot optimization does not reject normality and is
therefore normal.

5.2.2 Hypothesis Testing

Table 5.7: Mann-Whitney U P-values for P1

Zero shot One shot Few shot CoT

Unoptimized Code 0.000002438 0.001248 0.03298 0.00008366

Due to the fact that the unoptimized code is non-normal, we employ a one-tailed test, Mann-Whitney
U-Test. Since all p-values are below the significance level, we are able to reject the null hypothesis, in
favor of the alternative hypothesis due to the direction of the data.

5.3 P2: Creation of text using string concatenation

Table 5.8: The duration (s) of profiling for P2.

Prompt Unoptimized Zero shot One shot Few shot CoT
Mean 9.25 1.26 2.78 4.02 1.51
Standard Deviation 0.47 0.25 0.38 3.20e-3 1.60e-3
Median 9.05 1.26 2.51 4.02 1.51
Min 9.04 1.00 2.51 4.02 1.50
Max 12.05 1.51 3.52 4.03 1.52
Coefficient of Variation (%) 5.12 20.18 13.79 0.08 0.11

The first thing we can notice is that unoptimized code has the highest average duration of all the code
variants. Zero shot achieves the lowest duration and this is followed by the one shot optimization, chain
of thought and the highest, few shot. Few shot achieves the lowest variability with its coefficient of
variation at 0.08. This is followed by chain of thought at 0.11.

Table 5.9: The power (W) during profiling for P2.

Prompt Unoptimized Zero shot One shot Few shot CoT
Mean 25.53 20.64 21.67 22.39 21.83
Standard Deviation 1.43 0.56 0.98 0.84 0.63
Median 25.02 20.57 22.06 22.18 21.60
Min 23.40 19.61 20.07 21.13 21.11
Max 31.75 22.41 23.27 24.77 23.62
Coefficient of Variation (%) 5.60 2.70 4.50 3.77 2.86

The unoptimized code variant achieves the highest average power use and it has the least stable
sample with a coefficient of variation at 5.60. The optimized code variants show slightly lower mean
power use and relatively smaller variations overall. The smallest of these is zero shot at 2.70% and the
highest is the one-shot optimization at 4.50%.

25

CHAPTER 5. RESULTS

Table 5.10: the corrected energy consumption (J) for P2.

Prompt Unoptimized Zero shot One shot Few shot CoT
Mean 193.27 20.02 47.11 69.34 25.26
Standard Deviation 21.85 4.22 5.76 3.14 0.92
Median 184.67 20.11 44.93 68.57 24.89
Min 170.05 15.20 38.60 64.30 24.26
Max 285.47 26.17 62.82 78.27 27.99
Coefficient of Variation (%) 11.30 21.08 12.23 4.53 3.62

The unoptimized code variant uses substantially more energy on average than its optimized counter-
parts. Across the optimization variants, we see that zero-shot achieves the lowest average at 20.02 J, but
it has the highest variability with 21.08% of coefficient of variation. Few-shot and chain-of-thought are
centered and they hang in between at 69 joules and 25.26 joules. And they have, from all the variants,
the lowest variance with a coefficient variation at 4.53.

Table 5.11: Percentage reduction in corrected energy consumption compared to
unoptimized code for P2.

Prompt Zero shot (%) One shot (%) Few shot (%) CoT (%)
Reduction 89.64 75.62 64.12 86.93

For P2 we can see that zero-shot achieves the highest percentage reduction from all the optimizations.
The lowest among these is the few-shot optimization, and in between we see one-shot and chain-of-thought
at approximately 80%.

5.3.1 Normality Testing

Table 5.12: Shapiro-Wilk P-values for P2

Unoptimized Zero shot One shot Few shot CoT

0.0000 0.0000 0.0003 0.0001 0.0000

All the variants result in p-values below 0.05. This indicates that none of the samples satisfy the normality
assumptions, therefore being non-normal.

5.3.2 Hypothesis Testing

Table 5.13: Mann-Whitney U P-values for P2

Zero shot One shot Few shot CoT

Unoptimized Code 9.224e-8 0.0002062 0.0000555 0.0000016

Since every sample is non-normal, we use a one-tailed Mann-Whitney U-test. Each p-value is below the
significance level and we can therefore reject the null hypothesis, in favor of the alternative hypothesis
due to the direction of the data. This tells us that the optimized code uses significantly less energy if we
compare it to the unoptimized code.

26

CHAPTER 5. RESULTS

5.4 P3: Excessive boxing of a primitive

Table 5.14: The duration (s) of profiling for P3.

Prompt Unoptimized Zero shot One shot Few shot CoT
Mean 6.03 1.51 1.51 1.51 1.50
Standard Deviation 3.00e-3 1.40e-3 1.50e-3 3.20e-3 0.03
Median 6.03 1.51 1.51 1.51 1.51
Min 6.02 1.50 1.50 1.49 1.31
Max 6.04 1.51 1.51 1.51 1.51
Coefficient of Variation (%) 0.05 0.09 0.10 0.21 1.83

The unoptimized variant takes the longest time to measure with an average of 6.03 seconds. This is
followed with all the optimizations at a stable 1.5 seconds. The standard deviations for every variant is
practically zero. This implies a low variability in the data. The highest among these is chain of thought
achieving a coefficient of variation at 1.83%.

Table 5.15: The power (W) during profiling for P3.

Prompt Unoptimized Zero shot One shot Few shot CoT
Mean 23.99 17.63 17.36 17.00 16.99
Standard Deviation 0.76 0.53 0.55 2.10 2.12
Median 24.34 17.77 17.38 16.42 16.49
Min 21.90 16.72 16.43 15.27 15.62
Max 24.96 18.49 18.41 28.33 30.47
Coefficient of Variation (%) 3.15 3.01 3.15 12.36 12.47

The unoptimized variant achieves the highest mean power. The optimizations are slightly lower at
around 17 watts. From all the optimizations we see that few shot and chain of thought have a particularly
high variability with a coefficient of variation at 12.36% and 12.47%.

Table 5.16: the corrected energy consumption (J) for P3.

Prompt Unoptimized Zero shot One shot Few shot CoT
Mean 116.50 18.63 18.21 18.19 18.21
Standard Deviation 4.78 0.68 0.76 3.32 2.83
Median 118.45 18.72 18.25 17.28 17.66
Min 104.40 17.39 16.95 15.69 16.27
Max 123.03 19.93 19.90 36.82 36.37
Coefficient of Variation (%) 4.10 3.64 4.16 18.27 15.52

The unoptimized code variant consumes the most energy at 116.50 joules. The optimizations are
substantially lower than that, averaging out at around 18-19 joules. From all the values, few shot and
chain of thought have the highest coefficient of variation, indicating that these variables are not stable.

Table 5.17: Percentage reduction in corrected energy consumption compared to
unoptimized code for P3.

Prompt Zero shot (%) One shot (%) Few shot (%) CoT (%)

Reduction 84.01 84.37 84.39 84.37

27

CHAPTER 5. RESULTS

The optimizations for P3 show a consistent reduction of 84%, having small differences in between,
showing that the few shot achieves the highest, while the zero shot achieves the lowest. However, these
differences are again minor and don’t suggest anything out of the ordinary.

5.4.1 Normality Testing

Table 5.18: Shapiro-Wilk P-values for P3

Unoptimized Zero shot One shot Few shot CoT

0.0003 0.0759 0.0918 0.0000 0.0000

After applying the Shapiro-Wilk tests on all the code variants, the unoptimized few-shot and chain-of-
thought variants have shown not to follow a normal distribution. In contrary, the zero-shot and one-shot
code variants do meet the criteria for normality.

5.4.2 Hypothesis Testing

Table 5.19: Mann-Whitney U P-values for P3

Zero shot One shot Few shot CoT

Unoptimized Code 0.02637 0.03575 3.489e-10 2.816e-12

Since the unoptimized code is not normal, we will employ a one-tailed Mann Whitney U-test. The results
show that for all p-values they are each below the significance level and as a consequence we can reject
the null hypothesis. The data direction therefore supports the alternative hypothesis.

28

Chapter 6

Discussion

This chapter discusses the results of the energy measurements (P1, P2, and P3). Subsequently, the
second research question will be addressed, followed by an identification of threats to validity.

Finding 1: LLM optimizations consistently lead to significantly reduced energy expenditure
when compared to the unoptimized code.

Across all three patterns, the results indicate that unoptimized code consumes noticeably more energy
than optimized variants. In each scenario, the Mann-Whitney U tests found statistically significant
reductions in energy usage, confirming that refactoring anti-patterns can have a measurable, positive
impact on a program’s energy efficiency.

Finding 2: LLM optimizations show small differences in energy consumption at P1 and P3.

Although refactored code variants outperformed the baseline in each pattern, results for P1 and P3
indicate that no single prompting strategy, whether zero-shot, one-shot, few-shot, or chain-of-thought,
consistently and substantially outperforms the other. The corrected energy consumptions among these
optimizations remain comparatively close, and report only minor differences.

To address the first research question, we observed that Refacturbo is able to use a static analysis
engine to identify anti-patterns and use it to generate targeted prompts. These are then fed into a large
language model that produces a refactored version, an energy-optimized version, that in turn replaces
the original code. By combining these components in a two-stage pipeline, we are able to automatically
refactor single file anti-patterns. With this system in place, we were able to generate code for four dif-
ferent prompt strategies in order to evaluate them for the second research question. The results show
that all optimized versions achieve substantial energy savings relative to the unoptimized code. Yet, the
specific optimizations show small differences in energy impact for two of the tested patterns. Therefore,
while the large language model is able to optimize code, generally reducing energy consumption, no
single prompting approach consistently outperforms the other.

6.1 Threats to validity

Construct validity: The energy experiments rely on system-level power metrics via the PowerMetrics
application in order to approximate the energy consumption of a program. Although RAPL-based mea-
surements are widely used, they capture overall system power, rather than isolating the Java process
itself. This implies that background processes or minor OS activities or programs are able to introduce
noise into the measurements. The study also assumes that refactoring anti-patterns into optimized ver-
sions yields energy-efficient code. While this is consistent with the measured data, any of these gains
can also be a byproduct of compiler optimizations or other system-level factors, rather than the code
changes alone.

Internal Validity: Even with attempts to turn off non-essential processes of the device, some back-
ground tasks could still run intermittently, such as indexing or OS daemons, affecting the power use.

29

CHAPTER 6. DISCUSSION

Variations in the baseline energy consumption across runs due to short-lived processes or temperature
throttling could result into slight inaccuracies in the energy measurements. Furthermore, power was
sampled at 2 Hz, every 500 ms. Changes outside this sampling interval are smooth and this might po-
tentially not capture small but large power spikes or dips. Additionally, Java’s just-in-time! compilation
and potential caching? within the JVM could affect execution performance over repeated runs. While
repeating the test multiple times can reduce this randomness, it might never be completely eliminated.
Finally, the calls made by the orchestrator and the sampler script also consume resources. Even though
this study attempts to subtract a baseline, if the measurement overhead is not stable, residual overhead
could have an influence on the results.

External Validity: The experiments are run on a 2018 Intel based MacBook Pro. Any character-
istics such as clock speed, CPU architecture, cooling differs by hardware vendor and model. Newer
MacBook Pros for example don’t have an Intel chip and are not able to interface with Intel RAPL.
Therefore the results cannot generalize to other systems. Mac OS behavior, process scheduling and
power management differ from other operating systems and the measured impacts may not replicate on
Windows or Linux. Furthermore the code is generated by a single model GPT-40 using four prompting
strategies. While these represent typical generation methods, other large language models may produce
code fragments differently, thus impacting the energy usage.

Lhttps://docs.oracle.com/en/database/oracle/oracle-database/21/jjdev/Oracle-JVM-JIT.html
2https://docs.oracle.com /javase/8/embedded /develop-apps-platforms/codecache.htm

30

Chapter 7

Related work

This research looks at automated refactoring of green anti-patterns by using large language models.
This topic is related to multiple studies. However, we can see in the table below that these studies use
a variety of methods to achieve that goal. This study differentiates itself by using the ISO/IEC 25010
specification to make static analysis rules in order to generate targeted prompts. Prior work by Lin et
al. [3] does hint at the use of static analysis in a tool called CodePlan. However, this tool does not target
energy efficiency problems. Another work by Dearing et al. [10] shows that they do use a multistage
pipeline to catch such problems, similar to Refacturbo. However, it does not use the ISO specification
as a guide for remediating these anti-patterns.

Table 7.1: Table of Related Studies

Author

Project

Description

Lin et al. [3] (2025)

Dearing et al. [10]
(2025)

Cordeiro et al. [51]
(2024)

Shypula et al. [4]
(2024)

Peng et al. [39)
(2024)

Development of an code optimizer,
a system designed to automatically
refactor source code for performance
at scale.

Development of an automated refac-
toring framework.

Evaluation of an LLM, specialized in
code generation.

Framework for improving LLMs for
code optimizations

Developed a tool compatible with var-
ious programming languages to im-
prove software sustainability

A code optimizer that automates
refactoring of source code to improve
the performance at scale. It uses his-
torical commits to identify and ad-
dress performance anti-patterns in a
codebase.

An automated refactoring framework
that uses large language models to
generate energy efficient parallel code
for target systems.

Evaluates a large language model that
is optimized for code generation. In
refactoring code from 30 open source
Java projects.

A framework for using LLMs to do
high-level program optimizations.

It uses prompting strategies such as
retrieval-based prompting, but also
fine-tuning.

Introduces an application that uses
LLMs to optimize software for energy-
efficiency. It shows that code gener-
ated by the model can achieve better
performance than compiler optimiza-
tions for small programs.

31

Chapter 8

Conclusion

In this research, a system has been developed that can automate refactoring for inefficient code patterns
by using large language models. In order to do this, we set out two research questions. The first
looked at how such a system can be developed, while the second evaluated the generated code on energy
consumption. For answering the first question, we introduced Refacturbo, a two-stage pipeline that can
use static analysis to find problematic code patterns, generate targeted prompts, and then use this as an
input for an LLM to refactor these and subsequently replace the original code. While the pipeline is able
to do these single-file refactorings, it is limited in that it cannot connect findings across files and solve
larger architectural-level patterns. These show areas for further improvement. After collecting three
different green anti-patterns, we were able to answer the second question by having Refacturbo generate
four distinct optimizations for three different unoptimized Java programs containing a performance anti-
pattern, which were then evaluated for energy consumption using custom-built instrumentation. Across
all three anti-patterns, the optimized code versions achieved an average reduction of 82%, ranging from
a 64% up to 90%. Therefore, the optimized versions consistently reduced the energy cost significantly
relative to the unoptimized code. However, there is not one optimization that universally outperformed
the other. Therefore, this research demonstrates that large language models can be used to target specific
green anti-patterns and transform them into more energy-efficient optimizations, but it also shows that
there is much to improve in the current system for future work.

8.1 Future directions

Future directions following this research could go into two paths, where the first path is about extending
the capability of the current Refacturbo system, giving it the feature of connecting static analysis findings
with each other, in order to solve larger architectural patterns. These patterns can be found in the ISO
specification used for this study. However, making such a system requires at least to think about how
to create a dynamic system, whereby the context of files are exchanged with each other in separate
remediation prompts, and how the output from the LLM can be used in replacing the original code.
Furthermore, there is room to see how a rollback mechanism can be created, in order to restore all
changes after an optimization has not succeeded. One could think about, for example, using git as one
of these methods.

Another way to extend the capability of Refacturbo is to make it integratable in CI-CD pipelines.
Doing this could be achieved by having some threshold value for detected anti-pattern and if crossed
cancel the build and create a report showing all the possible patterns that can be remediated and
what kind of refactoring would be needed for that. This makes Refacturbo more useful in the software
engineering workflow than it currently is.

The second path is testing the system as it is now, on a larger scale. Currently, we test on small
isolated patterns that are repeated internally in order to make for a testable configuration. However, this
system has not yet been tested on larger open source projects, and in order to see and evaluate where
the system finds its limits, it could be worthwhile to test it on open source systems.

32

Acknowledgements

First of all, I want to thank Ana Oprescu, my supervisor, for allowing me to research this topic that is
so relevant in this time. Also, she and her team managed to create a great experience throughout the
master program. I would also like to thank various experts and contributors, specifically Pepijn van de
Kamp and Gushu Gao from Software Improvement Group, who gave me access to Sigrid, a tool that
was instrumental in understanding green code anti-patterns. My thanks go also to my classmates who
have been with me since the pre-master and who regularly met with me during this process. Finally, I
thank my family and friends who have been reassuring me throughout the process and encouraging me
making this achievement possible.

33

Bibliography

[10]

S. Ayers, S. Ballan, V. Gray, and R. McDonald, “Measuring the emissions and energy foot-
print of the ict sector: Implications for climate action,” International Telecommunication Union,
World, Publication 186435, Mar. 20, 2024, English. [Online]. Available: https: //documents .
worldbank.org/en/publication/documents-reports/documentdetail/099121223165540890/
p17859702a98880540a4b70d57876048abb.

FEuropean Commission, “The european green deal,” European Commission, Brussels, Communi-
cation COM(2019) 640 final, Dec. 11, 2019. [Online]. Available: https://eur-lex.europa.eu/
legal-content/EN/TXT/?uri=C0OM/,3A2019%3A640%3AFIN.

H. Lin et al., ECO: An LLM-Driven Efficient Code Optimizer for Warehouse Scale Computers,
arXiv:2503.15669 [cs], Mar. 2025. DOI: 10.48550/arXiv.2503.15669. [Online]. Available: http:
//arxiv.org/abs/2503.15669 (visited on 07/06/2025).

A. Shypula et al., Learning Performance-Improving Code Edits, arXiv:2302.07867 [cs], Apr. 2024.
DOIL: 10.48550/arXiv.2302.07867. [Online]. Available: http://arxiv.org/abs/2302.07867
(visited on 07/06,/2025).

J. Balanza-Martinez, P. Lago, and R. Verdecchia, “Tactics for Software Energy Efficiency: A Re-
view,” en, in Advances and New Trends in Environmental Informatics 2023, V. Wohlgemuth, D.
Kranzlmiiller, and M. H6b, Eds., Series Title: Progress in IS, Cham: Springer Nature Switzerland,
2024, pp. 115-140, 1SBN: 978-3-031-46901-5 978-3-031-46902-2. DOI: 10.1007/978-3-031-46902-
2_7. [Online]. Available: https://link.springer.com/10.1007/978-3-031-46902-2_7 (visited
on 05/26/2025).

H. Al-shakarjy and D. Basheer Taha, “Software Code Refactoring: A Comprehensive Review,”
en, Journal of Education and Science, vol. 32, no. 1, pp. 71-80, Mar. 2023, 1SSN: 2664-2530. DOI:
10.33899/edusj.2023.137163.1298. [Online]. Available: https://edusj.mosuljournals.com/
article_177130.html (visited on 06/22/2025).

P. I. Sommerhalter, “Calabash: An analysis framework and catalog for green code patterns in
software,” English, Available until 2031-08-19. No license applied; reading and citing permitted,
distribution and reuse require author’s permission., Master’s thesis, Faculteit der Natuurweten-
schappen, Wiskunde en Informatica, Universiteit van Amsterdam, Amsterdam, Netherlands, 2024.
[Online]. Available: https://dspace.uba.uva.nl/bitstreams/1d8b2220-ael7-4944-89fd-
34789a3fe6db/download.

C. Sahin, L. Pollock, and J. Clause, “How do code refactorings affect energy usage?” en, in Pro-
ceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, Torino Italy: ACM, Sep. 2014, pp. 1-10, 1SBN: 978-1-4503-2774-9. DOI: 10.1145/
2652524 . 2652538. [Online]. Available: https://dl.acm.org/doi/10.1145/2652524 . 2652538
(visited on 05/12/2025).

B. Liu, Y. Jiang, Y. Zhang, N. Niu, G. Li, and H. Liu, An Empirical Study on the Potential of LLMs
in Automated Software Refactoring, arXiv:2411.04444 [cs], Nov. 2024. DOI: 10.48550/arXiv.2411.
04444. [Online]. Available: http://arxiv.org/abs/2411.04444 (visited on 04/29/2025).

M. T. Dearing, Y. Tao, X. Wu, Z. Lan, and V. Taylor, Leveraging LLMs to Automate Energy-Aware
Refactoring of Parallel Scientific Codes, arXiv:2505.02184 [cs], May 2025. DOI: 10.48550/arXiv.
2505.02184. [Online]. Available: http://arxiv.org/abs/2505.02184 (visited on 07/06/2025).

34

https://documents.worldbank.org/en/publication/documents-reports/documentdetail/099121223165540890/p17859702a98880540a4b70d57876048abb
https://documents.worldbank.org/en/publication/documents-reports/documentdetail/099121223165540890/p17859702a98880540a4b70d57876048abb
https://documents.worldbank.org/en/publication/documents-reports/documentdetail/099121223165540890/p17859702a98880540a4b70d57876048abb
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN
https://doi.org/10.48550/arXiv.2503.15669
http://arxiv.org/abs/2503.15669
http://arxiv.org/abs/2503.15669
https://doi.org/10.48550/arXiv.2302.07867
http://arxiv.org/abs/2302.07867
https://doi.org/10.1007/978-3-031-46902-2_7
https://doi.org/10.1007/978-3-031-46902-2_7
https://link.springer.com/10.1007/978-3-031-46902-2_7
https://doi.org/10.33899/edusj.2023.137163.1298
https://edusj.mosuljournals.com/article_177130.html
https://edusj.mosuljournals.com/article_177130.html
https://dspace.uba.uva.nl/bitstreams/1d8b2220-ae17-4944-89fd-34789a3fe6db/download
https://dspace.uba.uva.nl/bitstreams/1d8b2220-ae17-4944-89fd-34789a3fe6db/download
https://doi.org/10.1145/2652524.2652538
https://doi.org/10.1145/2652524.2652538
https://dl.acm.org/doi/10.1145/2652524.2652538
https://doi.org/10.48550/arXiv.2411.04444
https://doi.org/10.48550/arXiv.2411.04444
http://arxiv.org/abs/2411.04444
https://doi.org/10.48550/arXiv.2505.02184
https://doi.org/10.48550/arXiv.2505.02184
http://arxiv.org/abs/2505.02184

BIBLIOGRAPHY

[11]

[14]

[15]

[16]

[17]

[18]

[20]

[21]

[22]

K. DePalma, I. Miminoshvili, C. Henselder, K. Moss, and E. A. AlOmar, “Exploring ChatGPT’s
code refactoring capabilities: An empirical study,” en, Expert Systems with Applications, vol. 249,
p- 123602, Sep. 2024, Publisher: Elsevier BV, 1SSN: 0957-4174. DOI: 10.1016/j .eswa.2024.123602.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0957417424004676
(visited on 05/23/2025).

T. Cappendijk, P. de Reus, and A. Oprescu, Generating Energy-efficient code with LLMs, Version
Number: 1, 2024. DOI: 10.48550/ARXIV.2411.10599. [Online|. Available: https://arxiv.org/
abs/2411.10599 (visited on 03/04/2025).

V.-A. Cursaru et al., A Controlled Experiment on the Energy Efficiency of the Source Code Gen-
erated by Code Llama, Version Number: 1, 2024. DOIL: 10 .48550/ARXIV.2405.03616. [Online].
Available: https://arxiv.org/abs/2405.03616 (visited on 03/04/2025).

T. B. Brown et al., Language Models are Few-Shot Learners, Version Number: 4, 2020. DOI: 10.
48550/ARXIV.2005.14165. [Online]. Available: https://arxiv.org/abs/2005.14165 (visited on
03/04/2025).

J. Wei et al., Chain-of-Thought Prompting FElicits Reasoning in Large Language Models, Version
Number: 6, 2022. DOI: 10.48550/ARXIV.2201.11903. [Online]. Available: https://arxiv.org/
abs/2201.11903 (visited on 03/04/2025).

O. Le Goaer and J. Hertout, “ecoCode: A SonarQube Plugin to Remove Energy Smells from An-
droid Projects,” en, in Proceedings of the 87th IEEE/ACM International Conference on Automated
Software Engineering, Rochester MI USA: ACM, Oct. 2022, pp. 1-4, 1SBN: 978-1-4503-9475-8. DOI:
10.1145/3551349.3559518. [Ounline]. Available: https://dl.acm.org/doi/10.1145/3551349.
3559518 (visited on 05/12/2025).

R. Sehgal, D. Mehrotra, R. Nagpal, and R. Sharma, “Green software: Refactoring approach,” en,
Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 7, pp. 4635—
4643, Jul. 2022, 1sSN: 13191578. DOI: 10.1016/j . jksuci.2020.10.022. [Online|. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S1319157820305164 (visited on 05/12/2025).

I. Sanhalp, M. M. Oztiirk, and T. Yigit, “Energy Efficiency Analysis of Code Refactoring Tech-
niques for Green and Sustainable Software in Portable Devices,” en, Electronics, vol. 11, no. 3,
p. 442, Feb. 2022, 15SN: 2079-9292. DOI: 10 . 3390/ electronics11030442. [Online]. Available:
https://www.mdpi.com/2079-9292/11/3/442 (visited on 05/12/2025).

Z. Ournani, R. Rouvoy, P. Rust, and J. Penhoat, “Tales from the Code #2: A Detailed Assessment
of Code Refactoring’s Impact on Energy Consumption,” en, in Software Technologies, H.-G. Fill,
M. Van Sinderen, and L. A. Maciaszek, Eds., vol. 1622, Series Title: Communications in Computer
and Information Science, Cham: Springer International Publishing, 2022, pp. 94-116, 1SBN: 978-
3-031-11512-7 978-3-031-11513-4. pOI: 10.1007 /978-3-031-11513-4_5. [Online|. Available:
https://link.springer.com/10.1007/978-3-031-11513-4_5 (visited on 05/12/2025).

O. Hamdi, A. Ouni, M. 0. Cinnéide, and M. W. Mkaouer, “A longitudinal study of the impact of
refactoring in android applications,” en, Information and Software Technology, vol. 140, p. 106 699,
Dec. 2021, 1SSN: 09505849. DOI: 10.1016/j . infsof . 2021 .106699. [Online|. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S0950584921001531 (visited on 05/12/2025).

I. Sanlialp and M. M. Ozturk, “Investigating the Impact of Code Refactoring Techniques on Energy
Consumption in Different Object-Oriented Programming Languages,” en, in Artificial Intelligence
and Applied Mathematics in Engineering Problems, D. J. Hemanth and U. Kose, Eds., vol. 43, Series
Title: Lecture Notes on Data Engineering and Communications Technologies, Cham: Springer
International Publishing, 2020, pp. 142-152, 1SBN: 978-3-030-36177-8 978-3-030-36178-5. DOI: 10.
1007/978-3-030-36178-5_12. [Online|. Available: http://link.springer.com/10.1007/978-
3-030-36178-5_12 (visited on 05/12/2025).

D. Connolly Bree and M. 0. Cinnéide, “Inheritance versus Delegation: Which is more energy effi-
cient?” en, in Proceedings of the IEEE/ACM 42nd International Conference on Software Engineer-
ing Workshops, Seoul Republic of Korea: ACM, Jun. 2020, pp. 323—-329, 1SBN: 978-1-4503-7963-2.
DOL: 10.1145/3387940 . 3392192. [Ounline]. Available: https://dl.acm.org/doi/10.1145/
3387940.3392192 (visited on 05/12/2025).

35

https://doi.org/10.1016/j.eswa.2024.123602
https://linkinghub.elsevier.com/retrieve/pii/S0957417424004676
https://doi.org/10.48550/ARXIV.2411.10599
https://arxiv.org/abs/2411.10599
https://arxiv.org/abs/2411.10599
https://doi.org/10.48550/ARXIV.2405.03616
https://arxiv.org/abs/2405.03616
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.48550/ARXIV.2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/ARXIV.2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://doi.org/10.1145/3551349.3559518
https://dl.acm.org/doi/10.1145/3551349.3559518
https://dl.acm.org/doi/10.1145/3551349.3559518
https://doi.org/10.1016/j.jksuci.2020.10.022
https://linkinghub.elsevier.com/retrieve/pii/S1319157820305164
https://linkinghub.elsevier.com/retrieve/pii/S1319157820305164
https://doi.org/10.3390/electronics11030442
https://www.mdpi.com/2079-9292/11/3/442
https://doi.org/10.1007/978-3-031-11513-4_5
https://link.springer.com/10.1007/978-3-031-11513-4_5
https://doi.org/10.1016/j.infsof.2021.106699
https://linkinghub.elsevier.com/retrieve/pii/S0950584921001531
https://linkinghub.elsevier.com/retrieve/pii/S0950584921001531
https://doi.org/10.1007/978-3-030-36178-5_12
https://doi.org/10.1007/978-3-030-36178-5_12
http://link.springer.com/10.1007/978-3-030-36178-5_12
http://link.springer.com/10.1007/978-3-030-36178-5_12
https://doi.org/10.1145/3387940.3392192
https://dl.acm.org/doi/10.1145/3387940.3392192
https://dl.acm.org/doi/10.1145/3387940.3392192

BIBLIOGRAPHY

[23] R. Morales, R. Saborido, F. Khomh, F. Chicano, and G. Antoniol, “EARMO: An Energy-Aware
Refactoring Approach for Mobile Apps,” IEEE Transactions on Software Engineering, vol. 44,
no. 12, pp. 11761206, Dec. 2018, 1ssn: 0098-5589, 1939-3520, 2326-3881. pOI: 10.1109/TSE.
2017.2757486. [Online]. Available: https://ieeexplore.ieee.org/document/8052533/ (visited
on 05/12/2025).

[24] D. Kim, J.-E. Hong, I. Yoon, and S.-H. Lee, “Code refactoring techniques for reducing energy con-
sumption in embedded computing environment,” en, Cluster Computing, vol. 21, no. 1, pp. 1079-
1095, Mar. 2018, 1sSN: 1386-7857, 1573-7543. DOI: 10.1007/s10586-016-0691-5. [Online]. Avail-
able: http://link.springer.com/10.1007/s10586-016-0691-5 (visited on 05/12/2025).

[25] R. Verdecchia, R. Aparicio Saez, G. Procaccianti, and P. Lago, “Empirical Evaluation of the Energy
Impact of Refactoring Code Smells,” pp. 365-345. DOI: 10.29007/dz83. [Online]. Available: https:
//easychair.org/publications/paper/MxpT (visited on 05/12/2025).

[26] R. Pérez-Castillo and M. Piattini, “Analyzing the Harmful Effect of God Class Refactoring on
Power Consumption,” IEEE Software, vol. 31, no. 3, pp. 48-54, May 2014, 1SSN: 0740-7459, 1937-
4194. por: 10.1109/MS.2014.23. [Online|. Available: https://ieeexplore.ieee.org/document/
6728938/ (visited on 05/12/2025).

[27) H. Naveed et al., A Comprehensive Overview of Large Language Models, arXiv:2307.06435 [cs],
Oct. 2024. DOL: 10.48550/arXiv. 2307 .06435. [Online]. Available: http://arxiv. org/abs/
2307.06435 (visited on 04/08/2025).

[28] A. Vaswani et al., Attention Is All You Need, arXiv:1706.03762 [cs]|, Aug. 2023. DOL: 10.48550/
arXiv . 1706 . 03762. [Online]. Available: http: //arxiv . org/abs /1706 . 03762 (visited on
04/08,/2025).

[29] A. Cho et al., Transformer Explainer: Interactive Learning of Text-Generative Models, arXiv:2408.04619
[cs], Aug. 2024. DOI: 10.48550/arXiv.2408.04619. [Online]. Available: http://arxiv.org/abs/
2408.04619 (visited on 07/02/2025).

[30] D. Jurafsky and J. H. Martin, Speech and language processing: an introduction to natural lan-
guage processing, computational linguistics, and speech recognition (Prentice Hall series in artificial
intelligence), eng. Upper Saddle River, N.J: Prentice Hall, 2000, 1SBN: 978-0-13-095069-7.

[31] Y. Liu et al.,, Understanding LLMs: A Comprehensive Overview from Training to Inference, arXiv:2401.02038
[cs], Jan. 2024. DOI: 10.48550/arXiv.2401.02038. [Online]. Available: http://arxiv.org/abs/
2401.02038 (visited on 04/09/2025).

[32] P. Liang et al., Holistic Evaluation of Language Models, arXiv:2211.09110 [cs], Oct. 2023. DOI:
10.48550/arXiv.2211.09110. [Online|. Available: http://arxiv.org/abs/2211.09110 (visited
on 04/09,/2025).

[33] S. Samsi et al., From Words to Watts: Benchmarking the Energy Costs of Large Language Model
Inference, Version Number: 1, 2023. DOI: 10 . 48550/ ARXIV . 2310 . 03003. [Online]. Available:
https://arxiv.org/abs/2310.03003 (visited on 03/04/2025).

[34] R. Rubei, A. Moussaid, C. di Sipio, and D. di Ruscio, Prompt engineering and its implications
on the energy consumption of Large Language Models, Version Number: 1, 2025. DOI: 10.48550/
ARXIV . 2501 .05899. [Online|. Available: https: //arxiv . org/abs /2501 . 05899 (visited on
03/04/2025).

[35] J. Liu, S. Xie, J. Wang, Y. Wei, Y. Ding, and L. Zhang, Evaluating Language Models for Efficient
Code Generation, arXiv:2408.06450 [cs], Aug. 2024. DOIL: 10.48550/arXiv.2408.06450. [Online].
Available: http://arxiv.org/abs/2408.06450 (visited on 03/04/2025).

[36) D. Huang, Y. Qing, W. Shang, H. Cui, and J. M. Zhang, EffiBench: Benchmarking the Efficiency
of Automatically Generated Code, arXiv:2402.02037 [cs], Oct. 2024. DOI: 10.48550/arXiv.2402.
02037. [Online]. Available: http://arxiv.org/abs/2402.02037 (visited on 03/04/2025).

[37] R. Qiu, W. W. Zeng, J. Ezick, C. Lott, and H. Tong, How Efficient is LLM-Generated Code? A
Rigorous & High-Standard Benchmark, arXiv:2406.06647 [cs], Feb. 2025. DOI: 10.48550/arXiv.
2406.06647. [Online]. Available: http://arxiv.org/abs/2406.06647 (visited on 03/04/2025).

[38] A. Shypula et al., Learning Performance-Improving Code Edits, Version Number: 5, 2023. DOI:
10.48550/ARXIV.2302.07867. [Online]. Available: https://arxiv.org/abs/2302.07867 (visited
on 03/04/2025).

36

https://doi.org/10.1109/TSE.2017.2757486
https://doi.org/10.1109/TSE.2017.2757486
https://ieeexplore.ieee.org/document/8052533/
https://doi.org/10.1007/s10586-016-0691-5
http://link.springer.com/10.1007/s10586-016-0691-5
https://doi.org/10.29007/dz83
https://easychair.org/publications/paper/MxpT
https://easychair.org/publications/paper/MxpT
https://doi.org/10.1109/MS.2014.23
https://ieeexplore.ieee.org/document/6728938/
https://ieeexplore.ieee.org/document/6728938/
https://doi.org/10.48550/arXiv.2307.06435
http://arxiv.org/abs/2307.06435
http://arxiv.org/abs/2307.06435
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.48550/arXiv.2408.04619
http://arxiv.org/abs/2408.04619
http://arxiv.org/abs/2408.04619
https://doi.org/10.48550/arXiv.2401.02038
http://arxiv.org/abs/2401.02038
http://arxiv.org/abs/2401.02038
https://doi.org/10.48550/arXiv.2211.09110
http://arxiv.org/abs/2211.09110
https://doi.org/10.48550/ARXIV.2310.03003
https://arxiv.org/abs/2310.03003
https://doi.org/10.48550/ARXIV.2501.05899
https://doi.org/10.48550/ARXIV.2501.05899
https://arxiv.org/abs/2501.05899
https://doi.org/10.48550/arXiv.2408.06450
http://arxiv.org/abs/2408.06450
https://doi.org/10.48550/arXiv.2402.02037
https://doi.org/10.48550/arXiv.2402.02037
http://arxiv.org/abs/2402.02037
https://doi.org/10.48550/arXiv.2406.06647
https://doi.org/10.48550/arXiv.2406.06647
http://arxiv.org/abs/2406.06647
https://doi.org/10.48550/ARXIV.2302.07867
https://arxiv.org/abs/2302.07867

BIBLIOGRAPHY

H. Peng et al., Large Language Models for Energy-Efficient Code: Emerging Results and Future Di-
rections, arXiv:2410.09241 [cs], Oct. 2024. DOL: 10.48550/arXiv.2410.09241. [Online]. Available:
http://arxiv.org/abs/2410.09241 (visited on 07/06/2025).

T. Vartziotis et al., Learn to Code Sustainably: An Empirical Study on LLM-based Green Code Gen-
eration, arXiv:2403.03344 [cs], Mar. 2024. DOI: 10.48550/arXiv.2403.03344. [Online]. Available:
http://arxiv.org/abs/2403.03344 (visited on 04/21/2025).

Q. Dong et al., A Survey on In-context Learning, Version Number: 6, 2023. DOI: 10.48550/ARXIV.
2301.00234. [Online]. Available: https://arxiv.org/abs/2301.00234 (visited on 03/04/2025).

A. Raventés, M. Paul, F. Chen, and S. Ganguli, Pretraining task diversity and the emergence of
non-Bayesian in-context learning for regression, Version Number: 2, 2023. DOI: 10.48550/ARXIV.
2306.15063. [Online]. Available: https://arxiv.org/abs/2306.15063 (visited on 04/11/2025).

D. Feitosa, L. Cruz, R. Abreu, J. P. Fernandes, M. Couto, and J. Saraiva, “Patterns and Energy
Consumption: Design, Implementation, Studies, and Stories,” en, in Software Sustainability, C.
Calero, M. A. Moraga, and M. Piattini, Eds., Cham: Springer International Publishing, 2021,
pp. 89-121, 1SBN: 978-3-030-69969-7 978-3-030-69970-3. DOIL: 10.1007/978-3-030-69970-3_5.
[Online]. Available: https://link.springer.com/10.1007/978-3-030-69970-3_5 (visited on
07/03/2025).

J. Mancebo, F. Garcia, and C. Calero, “A process for analysing the energy efficiency of software,”
en, Information and Software Technology, vol. 134, p. 106 560, Jun. 2021, 1sSN: 09505849. DOI:
10.1016/j . infsof . 2021 . 106560. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S0950584921000446 (visited on 03/04/2025).

F. Castor, Estimating the Energy Footprint of Software Systems: A Primer, arXiv:2407.11611 [cs],
Jul. 2024. DOT: 10.48550/arXiv.2407.11611. [Online]. Available: http://arxiv.org/abs/2407.
11611 (visited on 04/11/2025).

V. Stoico, V. Cortellessa, I. Malavolta, D. Di Pompeo, L. Pomante, and P. Lago, “An Approach
Using Performance Models for Supporting Energy Analysis of Software Systems,” en, in Computer
Performance Engineering and Stochastic Modelling, M. lacono, M. Scarpa, E. Barbierato, S. Ser-
rano, D. Cerotti, and F. Longo, Eds., vol. 14231, Series Title: Lecture Notes in Computer Science,
Cham: Springer Nature Switzerland, 2023, pp. 249-263, 1SBN: 978-3-031-43184-5 978-3-031-43185-
2. DOL: 10.1007/978-3-031-43185-2_17. [Online]. Available: https://link.springer.com/10.
1007/978-3-031-43185-2_17 (visited on 04/17/2025).

K. E. Atkinson, An introduction to numerical analysis, eng, 2. ed. New York: Wiley, 1989, 1SBN:
978-0-471-50023-0.

S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete samples),”
en, Biometrika, vol. 52, no. 3-4, pp. 591-611, Dec. 1965, 1ssN: 0006-3444, 1464-3510. DOI: 10 .
1093/biomet/52.3-4.591. [Online]. Available: https://academic.oup.com/biomet/article-
lookup/doi/10.1093/biomet/52.3-4.591 (visited on 05/22/2025).

H. B. Mann and D. R. Whitney, “On a Test of Whether one of Two Random Variables is Stochas-
tically Larger than the Other,” en, The Annals of Mathematical Statistics, vol. 18, no. 1, pp. 50—
60, Mar. 1947, 1sSN: 0003-4851. DOI: 10 . 1214 /aoms/1177730491. [Online]. Available: http :
//projecteuclid.org/euclid.aoms/1177730491 (visited on 05/22/2025).

Student, “The Probable Error of a Mean,” Biometrika, vol. 6, no. 1, p. 1, Mar. 1908, 1SSN: 00063444.
DOIL: 10.2307/2331554. [Online]. Available: https://www.jstor.org/stable/233155470rigin=
crossref (visited on 05/22/2025).

J. Cordeiro, S. Noei, and Y. Zou, An Empirical Study on the Code Refactoring Capability of Large
Language Models, arXiv:2411.02320 [cs], Nov. 2024. DOI: 10.48550/arXiv.2411.02320. [Online].
Available: http://arxiv.org/abs/2411.02320 (visited on 07/06/2025).

37

https://doi.org/10.48550/arXiv.2410.09241
http://arxiv.org/abs/2410.09241
https://doi.org/10.48550/arXiv.2403.03344
http://arxiv.org/abs/2403.03344
https://doi.org/10.48550/ARXIV.2301.00234
https://doi.org/10.48550/ARXIV.2301.00234
https://arxiv.org/abs/2301.00234
https://doi.org/10.48550/ARXIV.2306.15063
https://doi.org/10.48550/ARXIV.2306.15063
https://arxiv.org/abs/2306.15063
https://doi.org/10.1007/978-3-030-69970-3_5
https://link.springer.com/10.1007/978-3-030-69970-3_5
https://doi.org/10.1016/j.infsof.2021.106560
https://linkinghub.elsevier.com/retrieve/pii/S0950584921000446
https://linkinghub.elsevier.com/retrieve/pii/S0950584921000446
https://doi.org/10.48550/arXiv.2407.11611
http://arxiv.org/abs/2407.11611
http://arxiv.org/abs/2407.11611
https://doi.org/10.1007/978-3-031-43185-2_17
https://link.springer.com/10.1007/978-3-031-43185-2_17
https://link.springer.com/10.1007/978-3-031-43185-2_17
https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1093/biomet/52.3-4.591
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/52.3-4.591
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/52.3-4.591
https://doi.org/10.1214/aoms/1177730491
http://projecteuclid.org/euclid.aoms/1177730491
http://projecteuclid.org/euclid.aoms/1177730491
https://doi.org/10.2307/2331554
https://www.jstor.org/stable/2331554?origin=crossref
https://www.jstor.org/stable/2331554?origin=crossref
https://doi.org/10.48550/arXiv.2411.02320
http://arxiv.org/abs/2411.02320

Appendix A

Prompt templates

Task: Task description

Code:

Figure A.1: zero-shot

Task: Task description
Example 1: Optimized code example

Code:

Figure A.2: one-shot example

Task: Task description
Example 1: Optimized code example 1

Example 2: Optimized code example 2

Code:

Figure A.3: few-shot example

Task: Task description

Q:

A
Q:
A:

Code:

Figure A.4: a Chain of Thought (CoT) example

38

Appendix B

Anti-pattern rules

message: Avoid the use of a long if—else chain
[javal

if (SCONDI) $STMT1;

if
if
if

($COND2) $STMT2;
($COND3) $STMTS3;

rules:
— id: pl

languages:

severity : WARNING

patterns:

— pattern:

else
else
else
else

if

)
($COND4) $STMT4;
($COND5) $STMT5;

— pattern—not—inside: |
if (SCONDO) $STMTO;

else
else
else
else

metadata:
prompt :
prompt

if
if
if
if

($COND1) $STMTT1;
($COND2) $STMT?2;
($COND3) $STMTS3;
($COND4) $STMTH4;

Figure B.1: Semgrep rule file for P1

39

APPENDIX B. ANTI-PATTERN RULES

rules:
— id: p2
message: Avoid string concatenation in loop
languages: [java |
severity : WARNING
patterns:
— pattern—either:
— pattern: |

SF(...) {
ééTR: R
for (...) {

$STR += ...;

}

metadata:
prompt: |
prompt

Figure B.2: Semgrep rule file for P2

rules:
— id: p3

message: Unnecessary boxing detected. Avoid boxing/unboxing overhead.

languages: [java]
severity : WARNING
patterns:

— pattern: |

public $SRET $METHOD((...) {

Integer .valueOf (Integer.parselnt (...));

}

metadata :
prompt: |
prompt

Figure B.3: Semgrep rule file for P3

40

Appendix C

Programs

public class program {
public static final int INTERNALREPETITION_COUNT = 500000000;

public static void main(String [] args) {
long startTime = System.currentTimeMillis () ;

for (int x = 0; x < INTERNALREPETITION.COUNT; x++) {
getFibonacci(49);
}

long endTime = System
.currentTimeMillis () ;
System.out.println (” Execution-time:-” + (endTime — startTime) / 1000.0 + ”-
seconds”) ;

}
static public long getFibonacci(int n) {
if (n = 0)
return O;
else if (n = 1)
return 1;
else if (n 2)
return 1;
else if (n 3)
return 2;
else if (n = 4)
return 3;
else if (n = 5)
return 5;
else if (n = 6)
return §;
else if (n = 7)
return 13;
else
return —1;
}

Figure C.1: FibonacciP1

41

APPENDIX C. PROGRAMS

public class program {
public static final int INTERNALREPETITION_.COUNT = 10000;

public static void main(String [] args) {
long startTime = System.currentTimeMillis () ;

for (int x = 0; x < INTERNALREPETITION.COUNT; x++) {
generateFibonacciString (x);

}
long endTime = System.currentTimeMillis () ;
System.out.println (” Execution-time:-” + (endTime — startTime) / 1000.0);

}

public static String generateFibonacciString(int numRepetitions) {
String result = 77
int a = 0, b = 1;
for (int x = 0; x < numRepetitions; x++) {
result += a + (x < numRepetitions — 1 7 7 -7 : 77);
int next = a + b;
a = b;
b = next;

}

return result;

Figure C.2: FibonacciP2

public class program {
public static final int INTERNALREPETITION_.COUNT = 500000000;

public static void main(String [] args) {
long startTime = System.currentTimeMillis () ;

for (int x = 0; x < INTERNALREPETITION.COUNT; x++) {
Integer n = Integer.valueOf(40);
fibonacci(n);

}
long endTime = System.currentTimeMillis () ;
System.out.println (” Execution-time:-” 4+ (endTime — startTime) / 1000.0 + 7 -

seconds”) ;

}

public static Integer fibonacci(Integer n) {
if (n.intValue() <= 1) {
return Integer.valueOf(n.intValue());
}

Integer a = Integer.valueOf(0);
Integer b = Integer.valueOf(1);
Integer fib = Integer.valueOf(0);

for (Integer i = Integer.valueOf(2); i.intValue() <= n.intValue(); i = Integer.
valueOf (i.intValue() + 1)) {
fib = Integer.valueOf(a.intValue() + b.intValue());
b = fib;

}

return fib;

Figure C.3: FibonacciP3

42

	Introduction
	Context
	Problem statement
	Research questions
	Research method
	Contributions
	Scope
	Outline

	Background
	Energy-efficient software
	Code Efficiency Standards
	Performance refactoring

	Large Language Models
	Architecture
	Training
	Energy evaluations

	In-Context Learning (ICL)

	Development of an automated LLM refactoring system
	Introduction
	Requirements
	Design
	High-level overview
	Architecture

	Implementation
	Tools
	Analysis
	Processing

	Validation
	Limitations
	Conclusion

	Methodology for evaluating prompting strategies on energy consumption
	Experiment tasks
	Experiment design
	Variables
	Hypothesis
	LLM selection
	Prompt template
	Rule selection

	Experiment operation
	DUT specification
	Instrumentation

	Statistical analysis

	Results
	Baseline measurement
	P1: The use of an if-else chain instead of switch case
	Normality Testing
	Hypothesis Testing

	P2: Creation of text using string concatenation
	Normality Testing
	Hypothesis Testing

	P3: Excessive boxing of a primitive
	Normality Testing
	Hypothesis Testing

	Discussion
	Threats to validity

	Related work
	Conclusion
	Future directions

	Bibliography
	Appendix Prompt templates
	Appendix Anti-pattern rules
	Appendix Programs

